Spaces:
Runtime error
Runtime error
minye
Browse files- get-age.py +51 -0
- requirements.txt +8 -0
- requirements.txt +15 -0
- sample.py +28 -0
get-age.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import torch
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
7 |
+
|
8 |
+
# Init model, transforms
|
9 |
+
@st.cache_resource
|
10 |
+
def get_model_transformers():
|
11 |
+
model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
|
12 |
+
transforms = ViTImageProcessor.from_pretrained('nateraw/vit-age-classifier')
|
13 |
+
return model, transforms
|
14 |
+
|
15 |
+
st.title("๋์ด๋ฅผ ์์ธกํด๋ด
์๋ค!")
|
16 |
+
|
17 |
+
uploaded_file = st.file_uploader("๋์ด๋ฅผ ์์ธกํ ์ฌ๋์ ์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํ์ธ์.", type=["jpg", "jpeg", "png", 'gif', 'webp'])
|
18 |
+
|
19 |
+
if uploaded_file:
|
20 |
+
st.write(f'์
๋ก๋๋ ํ์ผ ์ด๋ฆ: {uploaded_file}')
|
21 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
22 |
+
|
23 |
+
# Get example image from official fairface repo + read it in as an image
|
24 |
+
r = requests.get('https://github.com/dchen236/FairFace/blob/master/detected_faces/race_Asian_face0.jpg?raw=true')
|
25 |
+
im = Image.open(uploaded_file)
|
26 |
+
|
27 |
+
model, transforms = get_model_transformers()
|
28 |
+
|
29 |
+
# Transform our image and pass it through the model
|
30 |
+
inputs = transforms(im, return_tensors='pt')
|
31 |
+
output = model(**inputs)
|
32 |
+
|
33 |
+
# Predicted Class probabilities
|
34 |
+
proba = output.logits.softmax(1)
|
35 |
+
|
36 |
+
values, indices = torch.topk(proba, k=5)
|
37 |
+
|
38 |
+
result_dict = {model.config.id2label[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
|
39 |
+
first_result = list(result_dict.keys())[0]
|
40 |
+
|
41 |
+
print(f'predicted result:{result_dict}')
|
42 |
+
print(f'first_result: {first_result}')
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
st.header('๊ฒฐ๊ณผ')
|
48 |
+
st.subheader(f'์์ธก๋ ๋์ด๋ {first_result} ์
๋๋ค')
|
49 |
+
|
50 |
+
for key, value in result_dict.items():
|
51 |
+
st.write(f'{key}: {value * 100:.2f}%')
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pillow
|
3 |
+
streamlit
|
4 |
+
|
5 |
+
# https://pytorch.org/
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
torchaudio
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pillow
|
3 |
+
streamlit
|
4 |
+
|
5 |
+
# https://pytorch.org/
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
torchaudiotransformers
|
9 |
+
pillow
|
10 |
+
streamlit
|
11 |
+
|
12 |
+
# https://pytorch.org/
|
13 |
+
torch
|
14 |
+
torchvision
|
15 |
+
torchaudio
|
sample.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import torch
|
3 |
+
from io import BytesIO
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
6 |
+
|
7 |
+
# Get example image from official fairface repo + read it in as an image
|
8 |
+
r = requests.get('https://github.com/dchen236/FairFace/blob/master/detected_faces/race_Asian_face0.jpg?raw=true')
|
9 |
+
im = Image.open(BytesIO(r.content))
|
10 |
+
|
11 |
+
# Init model, transforms
|
12 |
+
model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
|
13 |
+
transforms = ViTImageProcessor.from_pretrained('nateraw/vit-age-classifier')
|
14 |
+
|
15 |
+
# Transform our image and pass it through the model
|
16 |
+
inputs = transforms(im, return_tensors='pt')
|
17 |
+
output = model(**inputs)
|
18 |
+
|
19 |
+
# Predicted Class probabilities
|
20 |
+
proba = output.logits.softmax(1)
|
21 |
+
|
22 |
+
values, indices = torch.topk(proba, k=5)
|
23 |
+
|
24 |
+
result_dict = {model.config.id2label[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
|
25 |
+
first_result = list(result_dict.keys())[0]
|
26 |
+
|
27 |
+
print(f'predicted result:{result_dict}')
|
28 |
+
print(f'first_result: {first_result}')
|