Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
def set_seed(seed): | |
np.random.seed(seed) | |
torch.random.manual_seed(seed) | |
def get_wikitext2(nsamples, seed, seqlen, model): | |
from datasets import load_dataset | |
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train') | |
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') | |
from transformers import AutoTokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) | |
except: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) | |
trainenc = tokenizer("\n\n".join(traindata['text']), return_tensors='pt') | |
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt') | |
import random | |
random.seed(seed) | |
trainloader = [] | |
for _ in range(nsamples): | |
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
inp = trainenc.input_ids[:, i:j] | |
tar = inp.clone() | |
tar[:, :-1] = -100 | |
trainloader.append((inp, tar)) | |
return trainloader, testenc | |
def get_ptb(nsamples, seed, seqlen, model): | |
from datasets import load_dataset | |
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train') | |
valdata = load_dataset('ptb_text_only', 'penn_treebank', split='validation') | |
from transformers import AutoTokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) | |
except: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) | |
trainenc = tokenizer("\n\n".join(traindata['sentence']), return_tensors='pt') | |
testenc = tokenizer("\n\n".join(valdata['sentence']), return_tensors='pt') | |
import random | |
random.seed(seed) | |
trainloader = [] | |
for _ in range(nsamples): | |
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
inp = trainenc.input_ids[:, i:j] | |
tar = inp.clone() | |
tar[:, :-1] = -100 | |
trainloader.append((inp, tar)) | |
return trainloader, testenc | |
def get_c4(nsamples, seed, seqlen, model): | |
from datasets import load_dataset | |
traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False) | |
valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation', use_auth_token=False) | |
from transformers import AutoTokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) | |
except: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) | |
import random | |
random.seed(seed) | |
trainloader = [] | |
for _ in range(nsamples): | |
while True: | |
i = random.randint(0, len(traindata) - 1) | |
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt') | |
if trainenc.input_ids.shape[1] >= seqlen: | |
break | |
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
inp = trainenc.input_ids[:, i:j] | |
tar = inp.clone() | |
tar[:, :-1] = -100 | |
trainloader.append((inp, tar)) | |
import random | |
random.seed(0) | |
valenc = [] | |
for _ in range(256): | |
while True: | |
i = random.randint(0, len(valdata) - 1) | |
tmp = tokenizer(valdata[i]['text'], return_tensors='pt') | |
if tmp.input_ids.shape[1] >= seqlen: | |
break | |
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
valenc.append(tmp.input_ids[:, i:j]) | |
valenc = torch.hstack(valenc) | |
class TokenizerWrapper: | |
def __init__(self, input_ids): | |
self.input_ids = input_ids | |
valenc = TokenizerWrapper(valenc) | |
return trainloader, valenc | |
def get_ptb_new(nsamples, seed, seqlen, model): | |
from datasets import load_dataset | |
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train') | |
testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test') | |
from transformers import AutoTokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) | |
except: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) | |
trainenc = tokenizer(" ".join(traindata['sentence']), return_tensors='pt') | |
testenc = tokenizer(" ".join(testdata['sentence']), return_tensors='pt') | |
import random | |
random.seed(seed) | |
trainloader = [] | |
for _ in range(nsamples): | |
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
inp = trainenc.input_ids[:, i:j] | |
tar = inp.clone() | |
tar[:, :-1] = -100 | |
trainloader.append((inp, tar)) | |
return trainloader, testenc | |
def get_c4_new(nsamples, seed, seqlen, model): | |
from datasets import load_dataset | |
traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train') | |
valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation') | |
from transformers import AutoTokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) | |
except: | |
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) | |
import random | |
random.seed(seed) | |
trainloader = [] | |
for _ in range(nsamples): | |
while True: | |
i = random.randint(0, len(traindata) - 1) | |
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt') | |
if trainenc.input_ids.shape[1] >= seqlen: | |
break | |
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) | |
j = i + seqlen | |
inp = trainenc.input_ids[:, i:j] | |
tar = inp.clone() | |
tar[:, :-1] = -100 | |
trainloader.append((inp, tar)) | |
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt') | |
valenc = valenc.input_ids[:, :(256 * seqlen)] | |
class TokenizerWrapper: | |
def __init__(self, input_ids): | |
self.input_ids = input_ids | |
valenc = TokenizerWrapper(valenc) | |
return trainloader, valenc | |
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, model=''): | |
if 'wikitext2' in name: | |
return get_wikitext2(nsamples, seed, seqlen, model) | |
if 'ptb' in name: | |
if 'new' in name: | |
return get_ptb_new(nsamples, seed, seqlen, model) | |
return get_ptb(nsamples, seed, seqlen, model) | |
if 'c4' in name: | |
if 'new' in name: | |
return get_c4_new(nsamples, seed, seqlen, model) | |
return get_c4(nsamples, seed, seqlen, model) | |