Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spacy | |
from spacy.pipeline import EntityRuler | |
from spacy.language import Language | |
from spacy.matcher import PhraseMatcher | |
from spacy.tokens import Span | |
nlp = spacy.load("en_core_web_md") | |
user_input = input(str("")) | |
doc1 = nlp(user_input) | |
#print list of entities captured by pertained model | |
for ent in doc1.ents: | |
print(ent.text, ent.label_) | |
#inspect labels and their meaning | |
for ent in doc1.ents: | |
print(ent.label_, spacy.explain(ent.label_)) | |
#Use PhraseMatcher to find all references of interest | |
#Define the different references to Covid | |
user_entries = input(str("")) #gradio text box here to enter sample terms | |
pattern_list = [] | |
for i in user_entries.strip().split(): | |
pattern_list.append(i) | |
patterns = list(nlp.pipe(pattern_list)) | |
print("patterns:", patterns) | |
#Instantiate PhraseMatcher | |
matcher = PhraseMatcher(nlp.vocab) | |
#Create label for pattern | |
user_named = input(str("").strip()) #gradio text box here to enter pattern label | |
matcher.add(user_named, patterns) | |
# Define the custom component | |
def added_component_function(doc): | |
#Apply the matcher to the doc | |
matches = matcher(doc) | |
#Create a Span for each match and assign the label | |
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches] | |
# Overwrite the doc.ents with the matched spans | |
doc.ents = spans | |
return doc | |
# Add the component to the pipeline after the "ner" component | |
nlp.add_pipe("added_component"), after="ner") | |
print(nlp.pipe_names) | |
#Verify that your model now detects all specified mentions of Covid on another text | |
user_doc = input(str("").strip()) | |
apply_doc = nlp(user_doc) | |
print([(ent.text, ent.label_) for ent in apply_doc.ents]) | |
#Count total mentions of label COVID in the 3rd document | |
from collections import Counter | |
labels = [ent.label_ for ent in apply_doc.ents] | |
Counter(labels) | |