import random, time import requests import wandb word_site = "https://www.mit.edu/~ecprice/wordlist.10000" response = requests.get(word_site) WORDS = [w.decode("UTF-8") for w in response.content.splitlines()] def train(name, project="st", entity=None, epochs=10, bar=None): run = wandb.init( # Set the project where this run will be logged name=name, project=project, entity=entity, # Track hyperparameters and run metadata config={ "learning_rate": 0.02, "architecture": "CNN", "dataset": "CIFAR-100", "epochs": epochs, }) # This simple block simulates a training loop logging metrics offset = random.random() / 5 for epoch in range(1, epochs+1): acc = 1 - 2 ** -epoch - random.random() / epoch - offset loss = 2 ** -epoch + random.random() / epoch + offset # 2️⃣ Log metrics from your script to W&B wandb.log({"acc": acc, "loss": loss}) time.sleep(0.1) bar.progress(epoch/epochs) # Mark the run as finished wandb.finish()