Spaces:
Runtime error
Runtime error
taskswithcode
commited on
Commit
·
07e062e
1
Parent(s):
56e7f3c
Adding
Browse files- imdb_sent.txt +2 -2
- run.sh +1 -1
- twc_embeddings.py +190 -0
imdb_sent.txt
CHANGED
@@ -47,7 +47,7 @@ a mesmerizing film that certainly keeps your attention... Ben Daniels is fascina
|
|
47 |
I hope this group of film-makers never re-unites.
|
48 |
Unwatchable. You can't even make it past the first three minutes. And this is coming from a huge Adam Sandler fan!!1
|
49 |
"One of the funniest movies made in recent years. Good characterization, plot and exceptional chemistry make this one a classic"
|
50 |
-
"Add this little gem to your list of holiday regulars. It is
|
51 |
"no comment - stupid movie, acting average or worse... screenplay - no sense at all... SKIP IT!"
|
52 |
"If you haven't seen this, it's terrible. It is pure trash. I saw this about 17 years ago, and I'm still screwed up from it."
|
53 |
Absolutely fantastic! Whatever I say wouldn't do this underrated movie the justice it deserves. Watch it now! FANTASTIC!
|
@@ -56,7 +56,7 @@ Widow hires a psychopath as a handyman. Sloppy film noir thriller which doesn't
|
|
56 |
The Fiendish Plot of Dr. Fu Manchu (1980). This is hands down the worst film I've ever seen. What a sad way for a great comedian to go out.
|
57 |
"Obviously written for the stage. Lightweight but worthwhile. How can you go wrong with Ralph Richardson, Olivier and Merle Oberon."
|
58 |
This movie turned out to be better than I had expected it to be. Some parts were pretty funny. It was nice to have a movie with a new plot.
|
59 |
-
This movie is terrible. It's about some no brain surfin dude that inherits some company. Does Carrot Top have no shame
|
60 |
Adrian Pasdar is excellent is this film. He makes a fascinating woman.
|
61 |
"An unfunny, unworthy picture which is an undeserving end to Peter Sellers' career. It is a pity this movie was ever made."
|
62 |
"The plot was really weak and confused. This is a true Oprah flick. (In Oprah's world, all men are evil and all women are victims.)"
|
|
|
47 |
I hope this group of film-makers never re-unites.
|
48 |
Unwatchable. You can't even make it past the first three minutes. And this is coming from a huge Adam Sandler fan!!1
|
49 |
"One of the funniest movies made in recent years. Good characterization, plot and exceptional chemistry make this one a classic"
|
50 |
+
"Add this little gem to your list of holiday regulars. It is sweet, funny, and endearing"
|
51 |
"no comment - stupid movie, acting average or worse... screenplay - no sense at all... SKIP IT!"
|
52 |
"If you haven't seen this, it's terrible. It is pure trash. I saw this about 17 years ago, and I'm still screwed up from it."
|
53 |
Absolutely fantastic! Whatever I say wouldn't do this underrated movie the justice it deserves. Watch it now! FANTASTIC!
|
|
|
56 |
The Fiendish Plot of Dr. Fu Manchu (1980). This is hands down the worst film I've ever seen. What a sad way for a great comedian to go out.
|
57 |
"Obviously written for the stage. Lightweight but worthwhile. How can you go wrong with Ralph Richardson, Olivier and Merle Oberon."
|
58 |
This movie turned out to be better than I had expected it to be. Some parts were pretty funny. It was nice to have a movie with a new plot.
|
59 |
+
This movie is terrible. It's about some no brain surfin dude that inherits some company. Does Carrot Top have no shame?
|
60 |
Adrian Pasdar is excellent is this film. He makes a fascinating woman.
|
61 |
"An unfunny, unworthy picture which is an undeserving end to Peter Sellers' career. It is a pity this movie was ever made."
|
62 |
"The plot was really weak and confused. This is a true Oprah flick. (In Oprah's world, all men are evil and all women are victims.)"
|
run.sh
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
streamlit run app.py
|
2 |
|
|
|
1 |
+
streamlit run app.py --server.port 80 "1" "sim_app_examples.json" "sim_app_models.json"
|
2 |
|
twc_embeddings.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from transformers import AutoModel, AutoTokenizer
|
|
|
2 |
from scipy.spatial.distance import cosine
|
3 |
import argparse
|
4 |
import json
|
@@ -11,6 +12,195 @@ def read_text(input_file):
|
|
11 |
return arr[:-1]
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class SimCSEModel:
|
15 |
def __init__(self):
|
16 |
self.model = None
|
|
|
1 |
from transformers import AutoModel, AutoTokenizer
|
2 |
+
from transformers import AutoModelForCausalLM
|
3 |
from scipy.spatial.distance import cosine
|
4 |
import argparse
|
5 |
import json
|
|
|
12 |
return arr[:-1]
|
13 |
|
14 |
|
15 |
+
class CausalLMModel:
|
16 |
+
def __init__(self):
|
17 |
+
self.model = None
|
18 |
+
self.tokenizer = None
|
19 |
+
self.debug = False
|
20 |
+
print("In CausalLMModel Constructor")
|
21 |
+
|
22 |
+
def init_model(self,model_name = None):
|
23 |
+
# Get our models - The package will take care of downloading the models automatically
|
24 |
+
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
|
25 |
+
if (self.debug):
|
26 |
+
print("Init model",model_name)
|
27 |
+
# For best performance: EleutherAI/gpt-j-6B
|
28 |
+
if (model_name is None):
|
29 |
+
model_name = "EleutherAI/gpt-neo-125M"
|
30 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
32 |
+
self.model.eval()
|
33 |
+
self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
|
34 |
+
|
35 |
+
def compute_embeddings(self,input_data,is_file):
|
36 |
+
if (self.debug):
|
37 |
+
print("Computing embeddings for:", input_data[:20])
|
38 |
+
model = self.model
|
39 |
+
tokenizer = self.tokenizer
|
40 |
+
|
41 |
+
texts = read_text(input_data) if is_file == True else input_data
|
42 |
+
query = texts[0]
|
43 |
+
docs = texts[1:]
|
44 |
+
|
45 |
+
# Tokenize input texts
|
46 |
+
|
47 |
+
#print(f"Query: {query}")
|
48 |
+
scores = []
|
49 |
+
for doc in docs:
|
50 |
+
context = self.prompt.format(doc)
|
51 |
+
|
52 |
+
context_enc = tokenizer.encode(context, add_special_tokens=False)
|
53 |
+
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
|
54 |
+
# Slice off the last token, as we take its probability from the one before
|
55 |
+
model_input = torch.tensor(context_enc+continuation_enc[:-1])
|
56 |
+
continuation_len = len(continuation_enc)
|
57 |
+
input_len, = model_input.shape
|
58 |
+
|
59 |
+
# [seq_len] -> [seq_len, vocab]
|
60 |
+
logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu()
|
61 |
+
# [seq_len, vocab] -> [continuation_len, vocab]
|
62 |
+
logprobs = logprobs[input_len-continuation_len:]
|
63 |
+
# Gather the log probabilities of the continuation tokens -> [continuation_len]
|
64 |
+
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
|
65 |
+
score = torch.sum(logprobs)
|
66 |
+
scores.append(score.tolist())
|
67 |
+
return texts,scores
|
68 |
+
|
69 |
+
def output_results(self,output_file,texts,scores,main_index = 0):
|
70 |
+
cosine_dict = {}
|
71 |
+
docs = texts[1:]
|
72 |
+
if (self.debug):
|
73 |
+
print("Total sentences",len(texts))
|
74 |
+
assert(len(scores) == len(docs))
|
75 |
+
for i in range(len(docs)):
|
76 |
+
cosine_dict[docs[i]] = scores[i]
|
77 |
+
|
78 |
+
if (self.debug):
|
79 |
+
print("Input sentence:",texts[main_index])
|
80 |
+
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
|
81 |
+
if (self.debug):
|
82 |
+
for key in sorted_dict:
|
83 |
+
print("Document score for \"%s\" is: %.3f" % (key[:100], sorted_dict[key]))
|
84 |
+
if (output_file is not None):
|
85 |
+
with open(output_file,"w") as fp:
|
86 |
+
fp.write(json.dumps(sorted_dict,indent=0))
|
87 |
+
return sorted_dict
|
88 |
+
|
89 |
+
|
90 |
+
class SGPTQnAModel:
|
91 |
+
def __init__(self):
|
92 |
+
self.model = None
|
93 |
+
self.tokenizer = None
|
94 |
+
self.debug = False
|
95 |
+
print("In SGPT Q&A Constructor")
|
96 |
+
|
97 |
+
|
98 |
+
def init_model(self,model_name = None):
|
99 |
+
# Get our models - The package will take care of downloading the models automatically
|
100 |
+
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
|
101 |
+
if (self.debug):
|
102 |
+
print("Init model",model_name)
|
103 |
+
if (model_name is None):
|
104 |
+
model_name = "Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit"
|
105 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
106 |
+
self.model = AutoModel.from_pretrained(model_name)
|
107 |
+
self.model.eval()
|
108 |
+
self.SPECB_QUE_BOS = self.tokenizer.encode("[", add_special_tokens=False)[0]
|
109 |
+
self.SPECB_QUE_EOS = self.tokenizer.encode("]", add_special_tokens=False)[0]
|
110 |
+
|
111 |
+
self.SPECB_DOC_BOS = self.tokenizer.encode("{", add_special_tokens=False)[0]
|
112 |
+
self.SPECB_DOC_EOS = self.tokenizer.encode("}", add_special_tokens=False)[0]
|
113 |
+
|
114 |
+
|
115 |
+
def tokenize_with_specb(self,texts, is_query):
|
116 |
+
# Tokenize without padding
|
117 |
+
batch_tokens = self.tokenizer(texts, padding=False, truncation=True)
|
118 |
+
# Add special brackets & pay attention to them
|
119 |
+
for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]):
|
120 |
+
if is_query:
|
121 |
+
seq.insert(0, self.SPECB_QUE_BOS)
|
122 |
+
seq.append(self.SPECB_QUE_EOS)
|
123 |
+
else:
|
124 |
+
seq.insert(0, self.SPECB_DOC_BOS)
|
125 |
+
seq.append(self.SPECB_DOC_EOS)
|
126 |
+
att.insert(0, 1)
|
127 |
+
att.append(1)
|
128 |
+
# Add padding
|
129 |
+
batch_tokens = self.tokenizer.pad(batch_tokens, padding=True, return_tensors="pt")
|
130 |
+
return batch_tokens
|
131 |
+
|
132 |
+
def get_weightedmean_embedding(self,batch_tokens, model):
|
133 |
+
# Get the embeddings
|
134 |
+
with torch.no_grad():
|
135 |
+
# Get hidden state of shape [bs, seq_len, hid_dim]
|
136 |
+
last_hidden_state = self.model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
|
137 |
+
|
138 |
+
# Get weights of shape [bs, seq_len, hid_dim]
|
139 |
+
weights = (
|
140 |
+
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
|
141 |
+
.unsqueeze(0)
|
142 |
+
.unsqueeze(-1)
|
143 |
+
.expand(last_hidden_state.size())
|
144 |
+
.float().to(last_hidden_state.device)
|
145 |
+
)
|
146 |
+
|
147 |
+
# Get attn mask of shape [bs, seq_len, hid_dim]
|
148 |
+
input_mask_expanded = (
|
149 |
+
batch_tokens["attention_mask"]
|
150 |
+
.unsqueeze(-1)
|
151 |
+
.expand(last_hidden_state.size())
|
152 |
+
.float()
|
153 |
+
)
|
154 |
+
|
155 |
+
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
|
156 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
|
157 |
+
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
|
158 |
+
|
159 |
+
embeddings = sum_embeddings / sum_mask
|
160 |
+
|
161 |
+
return embeddings
|
162 |
+
|
163 |
+
def compute_embeddings(self,input_data,is_file):
|
164 |
+
if (self.debug):
|
165 |
+
print("Computing embeddings for:", input_data[:20])
|
166 |
+
model = self.model
|
167 |
+
tokenizer = self.tokenizer
|
168 |
+
|
169 |
+
texts = read_text(input_data) if is_file == True else input_data
|
170 |
+
|
171 |
+
queries = [texts[0]]
|
172 |
+
docs = texts[1:]
|
173 |
+
query_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(queries, is_query=True), self.model)
|
174 |
+
doc_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(docs, is_query=False), self.model)
|
175 |
+
return texts,(query_embeddings,doc_embeddings)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
def output_results(self,output_file,texts,embeddings,main_index = 0):
|
180 |
+
# Calculate cosine similarities
|
181 |
+
# Cosine similarities are in [-1, 1]. Higher means more similar
|
182 |
+
query_embeddings = embeddings[0]
|
183 |
+
doc_embeddings = embeddings[1]
|
184 |
+
cosine_dict = {}
|
185 |
+
queries = [texts[0]]
|
186 |
+
docs = texts[1:]
|
187 |
+
if (self.debug):
|
188 |
+
print("Total sentences",len(texts))
|
189 |
+
for i in range(len(docs)):
|
190 |
+
cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i])
|
191 |
+
|
192 |
+
if (self.debug):
|
193 |
+
print("Input sentence:",texts[main_index])
|
194 |
+
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
|
195 |
+
if (self.debug):
|
196 |
+
for key in sorted_dict:
|
197 |
+
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
|
198 |
+
if (output_file is not None):
|
199 |
+
with open(output_file,"w") as fp:
|
200 |
+
fp.write(json.dumps(sorted_dict,indent=0))
|
201 |
+
return sorted_dict
|
202 |
+
|
203 |
+
|
204 |
class SimCSEModel:
|
205 |
def __init__(self):
|
206 |
self.model = None
|