taskswithcode commited on
Commit
b65a786
·
1 Parent(s): fb73c83
app.py CHANGED
@@ -6,6 +6,7 @@ from io import StringIO
6
  import pdb
7
  import json
8
  from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
 
9
  import torch
10
  import requests
11
  import socket
@@ -59,7 +60,7 @@ def get_views(action):
59
 
60
  def construct_model_info_for_display(model_names):
61
  options_arr = []
62
- markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Hugging Face</i></div>"
63
  markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
64
  for node in model_names:
65
  options_arr .append(node["name"])
@@ -102,15 +103,15 @@ def load_model(model_name,model_class,load_model_name):
102
 
103
 
104
  @st.experimental_memo
105
- def cached_compute_similarity(sentences,_model,model_name,main_index):
106
- texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
107
  results = _model.output_results(None,texts,embeddings,main_index)
108
  return results
109
 
110
 
111
- def uncached_compute_similarity(sentences,_model,model_name,main_index):
112
  with st.spinner('Computing vectors for sentences'):
113
- texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
114
  results = _model.output_results(None,texts,embeddings,main_index)
115
  #st.success("Similarity computation complete")
116
  return results
@@ -123,7 +124,7 @@ def get_model_info(model_names,model_name):
123
  return get_model_info(model_names,DEFAULT_HF_MODEL)
124
 
125
 
126
- def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded,custom_model):
127
  display_area.text("Loading model:" + model_name)
128
  #Note. model_name may get mapped to new name in the call below for custom models
129
  orig_model_name = model_name
@@ -135,14 +136,18 @@ def run_test(model_names,model_name,sentences,display_area,main_index,user_uploa
135
  if ("Note" in model_info):
136
  fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
137
  display_area.write(fail_link)
 
 
 
 
138
  model = load_model(model_name,model_info["class"],load_model_name)
139
  display_area.text("Model " + model_name + " load complete")
140
  try:
141
  if (user_uploaded):
142
- results = uncached_compute_similarity(sentences,model,model_name,main_index)
143
  else:
144
  display_area.text("Computing vectors for sentences")
145
- results = cached_compute_similarity(sentences,model,model_name,main_index)
146
  display_area.text("Similarity computation complete")
147
  return results
148
 
@@ -254,15 +259,18 @@ def app_main(app_mode,example_files,model_name_files):
254
  run_model = selected_model
255
  st.session_state["model_name"] = selected_model
256
  st.session_state["main_index"] = main_index
257
- results = run_test(model_names,run_model,sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
258
  display_area.empty()
259
  with display_area.container():
260
- device = 'GPU' if torch.cuda.is_available() else 'CPU'
261
- response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
262
- if (len(custom_model_selection) != 0):
263
- st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
264
- display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
265
- #st.json(results)
 
 
 
266
  st.download_button(
267
  label="Download results as json",
268
  data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
 
6
  import pdb
7
  import json
8
  from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
9
+ from twc_openai_search import OpenAIQnAModel
10
  import torch
11
  import requests
12
  import socket
 
60
 
61
  def construct_model_info_for_display(model_names):
62
  options_arr = []
63
+ markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)</i></div>"
64
  markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
65
  for node in model_names:
66
  options_arr .append(node["name"])
 
103
 
104
 
105
  @st.experimental_memo
106
+ def cached_compute_similarity(input_file_name,sentences,_model,model_name,main_index):
107
+ texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
108
  results = _model.output_results(None,texts,embeddings,main_index)
109
  return results
110
 
111
 
112
+ def uncached_compute_similarity(input_file_name,sentences,_model,model_name,main_index):
113
  with st.spinner('Computing vectors for sentences'):
114
+ texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
115
  results = _model.output_results(None,texts,embeddings,main_index)
116
  #st.success("Similarity computation complete")
117
  return results
 
124
  return get_model_info(model_names,DEFAULT_HF_MODEL)
125
 
126
 
127
+ def run_test(model_names,model_name,input_file_name,sentences,display_area,main_index,user_uploaded,custom_model):
128
  display_area.text("Loading model:" + model_name)
129
  #Note. model_name may get mapped to new name in the call below for custom models
130
  orig_model_name = model_name
 
136
  if ("Note" in model_info):
137
  fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
138
  display_area.write(fail_link)
139
+ if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"):
140
+ fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
141
+ display_area.write(fail_link)
142
+ return {"error":fail_link}
143
  model = load_model(model_name,model_info["class"],load_model_name)
144
  display_area.text("Model " + model_name + " load complete")
145
  try:
146
  if (user_uploaded):
147
+ results = uncached_compute_similarity(input_file_name,sentences,model,model_name,main_index)
148
  else:
149
  display_area.text("Computing vectors for sentences")
150
+ results = cached_compute_similarity(input_file_name,sentences,model,model_name,main_index)
151
  display_area.text("Similarity computation complete")
152
  return results
153
 
 
259
  run_model = selected_model
260
  st.session_state["model_name"] = selected_model
261
  st.session_state["main_index"] = main_index
262
+ results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
263
  display_area.empty()
264
  with display_area.container():
265
+ if ("error" in results):
266
+ st.error(results["error"])
267
+ else:
268
+ device = 'GPU' if torch.cuda.is_available() else 'CPU'
269
+ response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
270
+ if (len(custom_model_selection) != 0):
271
+ st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
272
+ display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
273
+ #st.json(results)
274
  st.download_button(
275
  label="Download results as json",
276
  data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
doc_app_models.json CHANGED
@@ -108,7 +108,67 @@
108
  },
109
  "paper_url":"https://arxiv.org/abs/2104.08821v4",
110
  "mark":"True",
111
- "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
 
114
  ]
 
108
  },
109
  "paper_url":"https://arxiv.org/abs/2104.08821v4",
110
  "mark":"True",
111
+ "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
112
+ { "name":"GPT-3-175B (text-search-davinci-doc-001)" ,
113
+ "model":"text-search-davinci-doc-001",
114
+ "fork_url":"https://openai.com/api/",
115
+ "orig_author_url":"https://openai.com/api/",
116
+ "orig_author":"OpenAI",
117
+ "sota_info": {
118
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
119
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
120
+ },
121
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
122
+ "mark":"True",
123
+ "custom_load":"False",
124
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
125
+ "alt_url":"https://openai.com/api/",
126
+ "class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
127
+ { "name":"GPT-3-6.7B (text-search-curie-doc-001)" ,
128
+ "model":"text-search-curie-doc-001",
129
+ "fork_url":"https://openai.com/api/",
130
+ "orig_author_url":"https://openai.com/api/",
131
+ "orig_author":"OpenAI",
132
+ "sota_info": {
133
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
134
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
135
+ },
136
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
137
+ "mark":"True",
138
+ "custom_load":"False",
139
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
140
+ "alt_url":"https://openai.com/api/",
141
+ "class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
142
+ { "name":"GPT-3-1.3B (text-search-babbage-doc-001)" ,
143
+ "model":"text-search-babbage-doc-001",
144
+ "fork_url":"https://openai.com/api/",
145
+ "orig_author_url":"https://openai.com/api/",
146
+ "orig_author":"OpenAI",
147
+ "sota_info": {
148
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
149
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
150
+ },
151
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
152
+ "mark":"True",
153
+ "custom_load":"False",
154
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
155
+ "alt_url":"https://openai.com/api/",
156
+ "class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
157
+ { "name":"GPT-3-350M (text-search-ada-doc-001)" ,
158
+ "model":"text-search-ada-doc-001",
159
+ "fork_url":"https://openai.com/api/",
160
+ "orig_author_url":"https://openai.com/api/",
161
+ "orig_author":"OpenAI",
162
+ "sota_info": {
163
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
164
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
165
+ },
166
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
167
+ "mark":"True",
168
+ "custom_load":"False",
169
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
170
+ "alt_url":"https://openai.com/api/",
171
+ "class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}
172
 
173
 
174
  ]
text-search-ada-doc-001_planets_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-ada-doc-001_qna2_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-ada-doc-001_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-babbage-doc-001_planets_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-babbage-doc-001_qna2_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-babbage-doc-001_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-curie-doc-001_planets_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-curie-doc-001_qna2_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-curie-doc-001_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-davinci-doc-001_planets_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-davinci-doc-001_qna2_search.json ADDED
The diff for this file is too large to render. See raw diff
 
text-search-davinci-doc-001_qna_search.json ADDED
The diff for this file is too large to render. See raw diff
 
twc_embeddings.py CHANGED
@@ -32,7 +32,7 @@ class CausalLMModel:
32
  self.model.eval()
33
  self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
34
 
35
- def compute_embeddings(self,input_data,is_file):
36
  if (self.debug):
37
  print("Computing embeddings for:", input_data[:20])
38
  model = self.model
@@ -160,7 +160,7 @@ class SGPTQnAModel:
160
 
161
  return embeddings
162
 
163
- def compute_embeddings(self,input_data,is_file):
164
  if (self.debug):
165
  print("Computing embeddings for:", input_data[:20])
166
  model = self.model
@@ -215,7 +215,7 @@ class SimCSEModel:
215
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
216
  self.model = AutoModel.from_pretrained(model_name)
217
 
218
- def compute_embeddings(self,input_data,is_file):
219
  texts = read_text(input_data) if is_file == True else input_data
220
  inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
221
  with torch.no_grad():
@@ -266,7 +266,7 @@ class SGPTModel:
266
  # Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
267
  self.model.eval()
268
 
269
- def compute_embeddings(self,input_data,is_file):
270
  if (self.debug):
271
  print("Computing embeddings for:", input_data[:20])
272
  model = self.model
@@ -353,7 +353,7 @@ class HFModel:
353
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
354
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
355
 
356
- def compute_embeddings(self,input_data,is_file):
357
  #print("Computing embeddings for:", input_data[:20])
358
  model = self.model
359
  tokenizer = self.tokenizer
@@ -403,5 +403,5 @@ if __name__ == '__main__':
403
  results = parser.parse_args()
404
  obj = HFModel()
405
  obj.init_model(results.model)
406
- texts, embeddings = obj.compute_embeddings(results.input,is_file = True)
407
  results = obj.output_results(results.output,texts,embeddings)
 
32
  self.model.eval()
33
  self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
34
 
35
+ def compute_embeddings(self,input_file_name,input_data,is_file):
36
  if (self.debug):
37
  print("Computing embeddings for:", input_data[:20])
38
  model = self.model
 
160
 
161
  return embeddings
162
 
163
+ def compute_embeddings(self,input_file_name,input_data,is_file):
164
  if (self.debug):
165
  print("Computing embeddings for:", input_data[:20])
166
  model = self.model
 
215
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
216
  self.model = AutoModel.from_pretrained(model_name)
217
 
218
+ def compute_embeddings(self,input_file_name,input_file,input_data,is_file):
219
  texts = read_text(input_data) if is_file == True else input_data
220
  inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
221
  with torch.no_grad():
 
266
  # Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
267
  self.model.eval()
268
 
269
+ def compute_embeddings(self,input_file_name,input_data,is_file):
270
  if (self.debug):
271
  print("Computing embeddings for:", input_data[:20])
272
  model = self.model
 
353
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
354
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
355
 
356
+ def compute_embeddings(self,input_file_name,input_data,is_file):
357
  #print("Computing embeddings for:", input_data[:20])
358
  model = self.model
359
  tokenizer = self.tokenizer
 
403
  results = parser.parse_args()
404
  obj = HFModel()
405
  obj.init_model(results.model)
406
+ texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
407
  results = obj.output_results(results.output,texts,embeddings)
twc_openai_search.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.spatial.distance import cosine
2
+ import argparse
3
+ import json
4
+ import os
5
+ import openai
6
+ import pdb
7
+
8
+ def read_text(input_file):
9
+ arr = open(input_file).read().split("\n")
10
+ return arr[:-1]
11
+
12
+
13
+ class OpenAIQnAModel:
14
+ def __init__(self):
15
+ self.debug = False
16
+ self.q_model_name = None
17
+ self.d_model_name = None
18
+ self.skip_key = True
19
+ print("In OpenAI API constructor")
20
+
21
+
22
+ def init_model(self,model_name = None):
23
+ #print("OpenAI: Init model",model_name)
24
+ openai.api_key = os.getenv("OPENAI_API_KEY")
25
+ if (openai.api_key == None):
26
+ openai.api_key = ""
27
+ print("API key not set")
28
+
29
+ if (len(openai.api_key) == 0 and not self.skip_key):
30
+ print("Open API key not set")
31
+
32
+ if (model_name is None):
33
+ self.d_model_name = "text-search-ada-doc-001"
34
+ else:
35
+ self.d_model_name = model_name
36
+ self.q_model_name = self.construct_query_model_name(self.d_model_name)
37
+ print(f"OpenAI: Init model complete :query model {self.q_model_name} doc:{self.d_model_name}")
38
+
39
+ def construct_query_model_name(self,d_model_name):
40
+ return d_model_name.replace('-doc-','-query-')
41
+
42
+
43
+ def compute_embeddings(self,input_file_name,input_data,is_file):
44
+ if (len(openai.api_key) == 0 and not self.skip_key):
45
+ print("Open API key not set")
46
+ return [],[]
47
+ #print("In compute embeddings after key check")
48
+ in_file = input_file_name.split('/')[-1]
49
+ in_file = self.d_model_name + '_' + '.'.join(in_file.split('.')[:-1]) + "_search.json"
50
+ cached = False
51
+ try:
52
+ fp = open(in_file)
53
+ cached = True
54
+ embeddings = json.load(fp)
55
+ q_embeddings = [embeddings[0]]
56
+ d_embeddings = embeddings[1:]
57
+ print("Using cached embeddings")
58
+ except:
59
+ pass
60
+
61
+ texts = read_text(input_data) if is_file == True else input_data
62
+ queries = [texts[0]]
63
+ docs = texts[1:]
64
+
65
+ if (not cached):
66
+ print(f"Computing embeddings for {input_file_name} and query model {self.q_model_name}")
67
+ query_embeds = openai.Embedding.create(
68
+ input=queries,
69
+ model=self.q_model_name
70
+ )
71
+ print(f"Computing embeddings for {input_file_name} and doc model {self.q_model_name}")
72
+ doc_embeds = openai.Embedding.create(
73
+ input=docs,
74
+ model=self.d_model_name
75
+ )
76
+ q_embeddings = []
77
+ d_embeddings = []
78
+ for i in range(len(query_embeds['data'])):
79
+ q_embeddings.append(query_embeds['data'][i]['embedding'])
80
+ for i in range(len(doc_embeds['data'])):
81
+ d_embeddings.append(doc_embeds['data'][i]['embedding'])
82
+ if (not cached):
83
+ embeddings = q_embeddings + d_embeddings
84
+ with open(in_file,"w") as fp:
85
+ json.dump(embeddings,fp)
86
+ return texts,(q_embeddings,d_embeddings)
87
+
88
+ def output_results(self,output_file,texts,embeddings,main_index = 0):
89
+ # Calculate cosine similarities
90
+ # Cosine similarities are in [-1, 1]. Higher means more similar
91
+ query_embeddings = embeddings[0]
92
+ doc_embeddings = embeddings[1]
93
+ cosine_dict = {}
94
+ queries = [texts[0]]
95
+ docs = texts[1:]
96
+ if (self.debug):
97
+ print("Total sentences",len(texts))
98
+ for i in range(len(docs)):
99
+ cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i])
100
+
101
+ if (self.debug):
102
+ print("Input sentence:",texts[main_index])
103
+ sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
104
+ if (self.debug):
105
+ for key in sorted_dict:
106
+ print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
107
+ if (output_file is not None):
108
+ with open(output_file,"w") as fp:
109
+ fp.write(json.dumps(sorted_dict,indent=0))
110
+ return sorted_dict
111
+
112
+
113
+
114
+ if __name__ == '__main__':
115
+ parser = argparse.ArgumentParser(description='OpenAI model for document search embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
116
+ parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
117
+ parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
118
+ parser.add_argument('-model', action="store", dest="model",default="text-search-ada-doc-001",help="model name")
119
+
120
+ results = parser.parse_args()
121
+ obj = OpenAIQnAModel()
122
+ obj.init_model(results.model)
123
+ texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
124
+ results = obj.output_results(results.output,texts,embeddings)