import os from pyChatGPT import ChatGPT os.system("pip install -U gradio") import sys import gradio as gr os.system( "pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" ) # clone and install Detic os.system( "git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" ) os.chdir("Detic") # Install detectron2 import torch # Some basic setup: # Setup detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # import some common libraries import sys import numpy as np import os, json, cv2, random # import some common detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog # Detic libraries sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") sys.path.insert(0, "third_party/CenterNet2/") from centernet.config import add_centernet_config from detic.config import add_detic_config from detic.modeling.utils import reset_cls_test from PIL import Image # Build the detector and download our pretrained weights cfg = get_cfg() add_centernet_config(cfg) add_detic_config(cfg) cfg.MODEL.DEVICE = "cpu" cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( True # For better visualization purpose. Set to False for all classes. ) predictor = DefaultPredictor(cfg) # Setup the model's vocabulary using build-in datasets BUILDIN_CLASSIFIER = { "lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", "objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", "openimages": "datasets/metadata/oid_clip_a+cname.npy", "coco": "datasets/metadata/coco_clip_a+cname.npy", } BUILDIN_METADATA_PATH = { "lvis": "lvis_v1_val", "objects365": "objects365_v2_val", "openimages": "oid_val_expanded", "coco": "coco_2017_val", } vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco' metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) classifier = BUILDIN_CLASSIFIER[vocabulary] num_classes = len(metadata.thing_classes) reset_cls_test(predictor.model, classifier, num_classes) def inference(img,unique_only): im = cv2.imread(img) outputs = predictor(im) v = Visualizer(im[:, :, ::-1], metadata) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) detected_objects = [] object_list_str = [] box_locations = outputs["instances"].pred_boxes box_loc_screen = box_locations.tensor.cpu().numpy() unique_object_dict = {} for i, box_coord in enumerate(box_loc_screen): x0, y0, x1, y1 = box_coord width = x1 - x0 height = y1 - y0 predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] detected_objects.append( { "prediction": predicted_label, "x": int(x0), "y": int(y0), "w": int(width), "h": int(height), } ) if ((not unique_only) or (unique_only and predicted_label not in unique_object_dict)): object_list_str.append( f"{predicted_label} - X:{int(x0)} Y: {int(y0)} Width: {int(width)} Height: {int(height)}" ) unique_object_dict[predicted_label] = 1 output_str = "Imagine you are a blind but intelligent image captioner who is only given the X,Y coordinates and width, height of each object in a scene with no specific attributes of the objects themselves. Create a description of the scene using the relative positions and sizes of objects\n" for line in object_list_str: output_str += line + "\n" return ( Image.fromarray(np.uint8(out.get_image())).convert("RGB"), output_str ) with gr.Blocks() as demo: gr.Markdown("
You can duplicating this space and use your own session token:
") #gr.HTML("Instruction on how to get session token can be seen in video here. Add your session token by going to settings and add under secrets.
") with gr.Column(): inp = gr.Image(label="Input Image", type="filepath") chk = gr.Checkbox(label="Unique Object only?") btn_detic = gr.Button("Run Detic for ChatGPT") with gr.Column(): outviz = gr.Image(label="Visualization", type="pil") output_desc = gr.Textbox(label="Description for using in ChatGPT", lines=5) # outputjson = gr.JSON(label="Detected Objects") btn_detic.click(fn=inference, inputs=[inp,chk], outputs=[outviz, output_desc]) demo.launch()