import os import random from functools import cache from operator import itemgetter import langsmith from langchain.memory import ConversationBufferWindowMemory from langchain.retrievers import EnsembleRetriever from langchain_community.document_transformers import LongContextReorder from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableLambda from langchain_openai.chat_models import ChatOpenAI from .prompt_template import generate_prompt_template from .retrievers_setup import (DenseRetrieverClient, SparseRetrieverClient, compression_retriever_setup) # Helpers def reorder_documents(docs: list[Document]) -> list[Document]: """Long-Context Reorder: No matter the architecture of the model, there is a performance degradation when we include 10+ retrieved documents. Args: docs (list): List of Langchain documents Returns: list: Reordered list of Langchain documents """ reorder = LongContextReorder() return reorder.transform_documents(docs) def randomize_documents(documents: list[Document]) -> list[Document]: """Randomize the documents as an attempt to randomize the model recommendations.""" random.shuffle(documents) return documents def format_practitioners_docs(docs: list[Document]) -> str: """Format the practitioners_db Documents to markdown. Args: docs (list[Documents]): List of Langchain documents Returns: docs (str): """ return f"\n{'-' * 3}\n".join( [f"- Practitioner #{i+1}:\n\n\t" + d.page_content for i, d in enumerate(docs)] ) def format_tall_tree_docs(docs: list[Document]) -> str: """Format the tall_tree_db Documents to markdown. Args: docs (list[Documents]): List of Langchain documents Returns: docs (str): """ return f"\n{'-' * 3}\n".join( [f"- No. {i+1}:\n\n\t" + d.page_content for i, d in enumerate(docs)] ) @cache def create_langsmith_client(): """Create a Langsmith client.""" os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = "talltree-ai-assistant" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" langsmith_api_key = os.getenv("LANGCHAIN_API_KEY") if not langsmith_api_key: raise EnvironmentError( "Missing environment variable: LANGCHAIN_API_KEY") return langsmith.Client() # Set up Runnable and Memory @cache def get_rag_chain(model_name: str = "gpt-4", temperature: float = 0.2) -> tuple[ChatOpenAI, ConversationBufferWindowMemory]: """Set up runnable and chat memory Args: model_name (str, optional): LLM model. Defaults to "gpt-4" 30012024. temperature (float, optional): Model temperature. Defaults to 0.2. Returns: Runnable, Memory: Chain and Memory """ # Set up Langsmith to trace the chain langsmith_tracing = create_langsmith_client() # LLM and prompt template llm = ChatOpenAI(model_name=model_name, temperature=temperature) prompt = generate_prompt_template() # Set retrievers pointing to the practitioners's dataset embeddings_model = "text-embedding-ada-002" dense_retriever_client = DenseRetrieverClient(embeddings_model=embeddings_model, collection_name="practitioners_db") # Qdrant db as a retriever practitioners_db_dense_retriever = dense_retriever_client.get_dense_retriever(search_type="similarity", k=10) # Testing the sparse vector retriever using Qdrant collection_name = "practitioners_db_sparse_collection" vector_name = "sparse_vector" sparse_retriever_client = SparseRetrieverClient( collection_name=collection_name, vector_name=vector_name, splade_model_id="naver/splade-cocondenser-ensembledistil", k=15) practitioners_db_sparse_retriever = sparse_retriever_client.get_sparse_retriever() # Ensemble retriever for hyprid search (dense retriever seems to work better but the dense retriever is good for acronyms like RMT) practitioners_ensemble_retriever = EnsembleRetriever( retrievers=[practitioners_db_dense_retriever, practitioners_db_sparse_retriever], weights=[0.2, 0.8] ) # Compression retriever for practitioners db practitioners_db_compression_retriever = compression_retriever_setup( practitioners_ensemble_retriever, embeddings_model="text-embedding-ada-002", similarity_threshold=0.74 ) # Set retrievers pointing to the tall_tree_db dense_retriever_client = DenseRetrieverClient(embeddings_model=embeddings_model, collection_name="tall_tree_db") tall_tree_db_dense_retriever = dense_retriever_client.get_dense_retriever(search_type="similarity", k=8) # Compression retriever for tall_tree_db tall_tree_db_compression_retriever = compression_retriever_setup( tall_tree_db_dense_retriever, embeddings_model="text-embedding-ada-002", similarity_threshold=0.74 ) # Set conversation history window memory. It only uses the last k interactions. memory = ConversationBufferWindowMemory(memory_key="history", return_messages=True, k=6) # Set up runnable using LCEL setup_and_retrieval = {"practitioners_db": itemgetter("message") | practitioners_db_compression_retriever | format_practitioners_docs, "tall_tree_db": itemgetter("message") | tall_tree_db_compression_retriever | format_tall_tree_docs, "history": RunnableLambda(memory.load_memory_variables) | itemgetter("history"), "message": itemgetter("message") } chain = ( setup_and_retrieval | prompt | llm | StrOutputParser() ) return chain, memory