import openai import streamlit as st from langchain_core.messages import AIMessage, ChatMessage, HumanMessage from langchain_core.tracers.context import collect_runs from langsmith import Client from streamlit_feedback import streamlit_feedback from rag_chain.chain import get_rag_chain client = Client() # Streamlit page configuration st.set_page_config(page_title="Tall Tree Health", page_icon="💬", layout="centered", initial_sidebar_state="expanded") # Streamlit CSS configuration with open("styles/styles.css") as css: st.markdown(f"", unsafe_allow_html=True) # Error message templates base_error_message = ( "Oops! Something went wrong while processing your request. " "Please refresh the page or try again later.\n\n" "If the error persists, please contact us at " "[Tall Tree Health](https://www.talltreehealth.ca/contact-us)." ) openai_api_error_message = ( "We're sorry, but you've reached the maximum number of requests allowed per session.\n\n" "Please refresh the page to continue using the app." ) # Get chain and memory @st.cache_resource(show_spinner=False) def get_chain_and_memory(): try: # gpt-4 points to gpt-4-0613 # gpt-4-turbo-preview points to gpt-4-0125-preview # Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED # gpt-4-1106-preview return get_rag_chain(model_name="gpt-4-turbo-preview", temperature=0.2) except Exception as e: st.warning(base_error_message, icon="🙁") st.stop() chain, memory = get_chain_and_memory() # Set up session state and clean memory (important to clean the memory at the end of each session) if "history" not in st.session_state: st.session_state["history"] = [] memory.clear() if "messages" not in st.session_state: st.session_state["messages"] = [] # Add delimiter between sidebar expander and the welcome message st.text("\n" * 4) # Select locations element into a container with st.container(border=False): # Set the welcome message st.markdown( "Hello there! 👋 Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n" "To get started, please select your preferred location and share details about your symptoms or needs. " ) location = st.radio( "**Our Locations**:", ["Cordova Bay - Victoria", "James Bay - Victoria", "Comercial Drive - Vancouver"], index=None, horizontal=False, ) # Add delimiter between the container and the chat interface st.text("\n" * 4) # Get user input only if a location is selected prompt = "" if location: user_input = st.chat_input("Enter your message...") if user_input: st.session_state["messages"].append( ChatMessage(role="user", content=user_input)) prompt = f"{user_input}\nLocation: {location}" # Display previous messages user_avatar = "images/user.png" ai_avatar = "images/tall-tree-logo.png" for msg in st.session_state["messages"]: avatar = user_avatar if msg.role == 'user' else ai_avatar with st.chat_message(msg.role, avatar=avatar): st.markdown(msg.content) # Chat interface if prompt: # Add all previous messages to memory for human, ai in st.session_state["history"]: memory.chat_memory.add_user_message(HumanMessage(content=human)) memory.chat_memory.add_ai_message(AIMessage(content=ai)) # render the assistant's response with st.chat_message("assistant", avatar=ai_avatar): message_placeholder = st.empty() try: partial_message = "" with st.spinner(" "): with collect_runs() as cb: # Collect runs for feedback in langsmith for chunk in chain.stream({"message": prompt}): partial_message += chunk message_placeholder.markdown(partial_message + "|") st.session_state.run_id = cb.traced_runs[0].id except openai.BadRequestError: st.warning(openai_api_error_message, icon="🙁") st.stop() except Exception as e: st.warning(base_error_message, icon="🙁") st.stop() message_placeholder.markdown(partial_message) # Add the full response to the history st.session_state["history"].append((prompt, partial_message)) # Add AI message to memory after the response is generated memory.chat_memory.add_ai_message(AIMessage(content=partial_message)) # add the full response to the message history st.session_state["messages"].append(ChatMessage( role="assistant", content=partial_message)) # Feedback system using streamlit feedback and Langsmith # Add a sidebar st.sidebar.markdown( """ **Your Feedback Matters!** Help us enhance our AI-powered assistant by sharing your feedback.\n\n We provide a feedback mechanism directly within the AI Assistant to help us improve accuracy and other performance issues. This is an ongoing process, and we will continue to work together to harness the power of this new technology responsibly. **Rate the Response Quality:** - **👍 Thumbs Up**: The assistant's response is clear, complete, and helpful. - **👎 Thumbs Down**: The assistant's response is unclear, incomplete, or unhelpful. Thank you! Let's get started. 🚀 **Note**:\n\n This AI assistant is designed to provide guidance and general information about the services offered by Tall Tree Health. It is not intended for seeking medical advice and should not be used as such. The information provided by this generative AI technology cannot replace the advice of qualified healthcare professionals. """ ) # Get the feedback option feedback_option = "thumbs" if st.session_state.get("run_id"): run_id = st.session_state.run_id feedback = streamlit_feedback( feedback_type=feedback_option, key=f"feedback_{run_id}", ) score_mappings = { "thumbs": {"👍": 1, "👎": 0}, "faces": {"😀": 1, "🙂": 0.75, "😐": 0.5, "🙁": 0.25, "😞": 0}, } # Get the score mapping based on the selected feedback option scores = score_mappings[feedback_option] if feedback: # Get the score from the selected feedback option's score mapping score = scores.get(feedback["score"]) if score is not None: # Formulate feedback type string incorporating the feedback option # and score value feedback_type_str = f"{feedback_option} {feedback['score']}" # Record the feedback with the formulated feedback type string feedback_record = client.create_feedback( run_id, feedback_type_str, score=score, ) st.session_state.feedback = { "feedback_id": str(feedback_record.id), "score": score, } else: st.warning("Invalid feedback score.")