Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload 3 files
Browse files- utils/__init__.py +0 -0
- utils/data_processing.py +66 -0
- utils/update_vector_database.py +223 -0
utils/__init__.py
ADDED
File without changes
|
utils/data_processing.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
def format_docs(docs):
|
5 |
+
"""Print the contents of a list of Langchain Documents.
|
6 |
+
Args:
|
7 |
+
docs (str):
|
8 |
+
"""
|
9 |
+
print(
|
10 |
+
f"\n{'-' * 100}\n".join(
|
11 |
+
[f"Document {i+1}:\n\n" +
|
12 |
+
d.page_content for i, d in enumerate(docs)]
|
13 |
+
)
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def excel_to_dataframe(data_directory: str) -> pd.DataFrame:
|
18 |
+
"""Load an Excel file, clean its contents, and generate a pd.Dataframe.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
data_directory (str): File path to the directory where the Excel file is located.
|
22 |
+
|
23 |
+
Raises:
|
24 |
+
FileNotFoundError: If no Excel files are found in the specified directory.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
pd.Dataframe:
|
28 |
+
|
29 |
+
"""
|
30 |
+
# Get the xls file name (one excel worksheet)
|
31 |
+
excel_files = [file for file in data_directory.iterdir()
|
32 |
+
if file.suffix == '.xlsx']
|
33 |
+
|
34 |
+
if not excel_files:
|
35 |
+
raise FileNotFoundError(
|
36 |
+
"No Excel files found in the specified directory.")
|
37 |
+
if len(excel_files) > 1:
|
38 |
+
raise ValueError(
|
39 |
+
"More than one Excel file found in the specified directory.")
|
40 |
+
|
41 |
+
path = excel_files[0]
|
42 |
+
|
43 |
+
# Load Excel file
|
44 |
+
df = pd.read_excel(path, engine='openpyxl')
|
45 |
+
|
46 |
+
# Change column names to title case
|
47 |
+
df.columns = df.columns.str.title()
|
48 |
+
|
49 |
+
# Function to replace curly apostrophes with straight ones
|
50 |
+
def replace_apostrophes(text):
|
51 |
+
if isinstance(text, str):
|
52 |
+
return text.replace("\u2019", "'")
|
53 |
+
return text
|
54 |
+
|
55 |
+
# Clean data
|
56 |
+
# Trim strings, standardize text (convert to title case), and replace apostrophes
|
57 |
+
for col in df.columns:
|
58 |
+
# If the column is text-based
|
59 |
+
if col.lower() != 'booking link' and df[col].dtype == 'object':
|
60 |
+
# Trim, standardize case, and replace apostrophes
|
61 |
+
df[col] = df[col].str.strip().str.title().apply(replace_apostrophes)
|
62 |
+
|
63 |
+
# Handle missing values
|
64 |
+
df.fillna('Information Not Available', inplace=True)
|
65 |
+
|
66 |
+
return df
|
utils/update_vector_database.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from functools import cache
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from langchain_community.retrievers import QdrantSparseVectorRetriever
|
9 |
+
from langchain_community.vectorstores import Qdrant
|
10 |
+
from langchain_core.documents import Document
|
11 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
12 |
+
from qdrant_client import QdrantClient, models
|
13 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
14 |
+
|
15 |
+
from data_processing import excel_to_dataframe
|
16 |
+
|
17 |
+
|
18 |
+
class DataProcessor:
|
19 |
+
def __init__(self, data_dir: Path):
|
20 |
+
self.data_dir = data_dir
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def categorize_location(location):
|
24 |
+
if any(place in location.lower() for place in ['cordova bay', 'james bay']):
|
25 |
+
return 'Victoria'
|
26 |
+
return location
|
27 |
+
|
28 |
+
def load_practitioners_data(self):
|
29 |
+
try:
|
30 |
+
df = excel_to_dataframe(self.data_dir)
|
31 |
+
df['City'] = df['Location'].apply(self.categorize_location)
|
32 |
+
practitioners_data = []
|
33 |
+
for idx, row in df.iterrows():
|
34 |
+
# I am using dot as a separator for text embeddings
|
35 |
+
content = '. '.join(
|
36 |
+
f"{key}: {value}" for key, value in row.items())
|
37 |
+
doc = Document(page_content=content, metadata={'row': idx})
|
38 |
+
practitioners_data.append(doc)
|
39 |
+
return practitioners_data
|
40 |
+
except FileNotFoundError:
|
41 |
+
sys.exit(
|
42 |
+
"Directory or Excel file not found. Please check the path and try again.")
|
43 |
+
|
44 |
+
def load_tall_tree_data(self):
|
45 |
+
# Check if the file has a .json extension
|
46 |
+
json_files = [file for file in self.data_dir.iterdir()
|
47 |
+
if file.suffix == '.json']
|
48 |
+
|
49 |
+
if not json_files:
|
50 |
+
raise FileNotFoundError(
|
51 |
+
"No JSON files found in the specified directory.")
|
52 |
+
if len(json_files) > 1:
|
53 |
+
raise ValueError(
|
54 |
+
"More than one JSON file found in the specified directory.")
|
55 |
+
|
56 |
+
path = json_files[0]
|
57 |
+
data = self.load_json_file(path)
|
58 |
+
tall_tree_data = self.process_json_data(data)
|
59 |
+
|
60 |
+
return tall_tree_data
|
61 |
+
|
62 |
+
def load_json_file(self, path):
|
63 |
+
try:
|
64 |
+
with open(path, 'r') as f:
|
65 |
+
data = json.load(f)
|
66 |
+
return data
|
67 |
+
except json.JSONDecodeError:
|
68 |
+
raise ValueError(f"The file {path} is not a valid JSON file.")
|
69 |
+
|
70 |
+
def process_json_data(self, data):
|
71 |
+
tall_tree_data = []
|
72 |
+
for idx, (key, value) in enumerate(data.items()):
|
73 |
+
content = f"{key}: {value}"
|
74 |
+
doc = Document(page_content=content, metadata={'row': idx})
|
75 |
+
tall_tree_data.append(doc)
|
76 |
+
return tall_tree_data
|
77 |
+
|
78 |
+
|
79 |
+
class DenseVectorStore:
|
80 |
+
"""Store dense data in Qdrant vector database."""
|
81 |
+
|
82 |
+
def __init__(self, documents: list[Document], embeddings: OpenAIEmbeddings, collection_name: str = 'practitioners_db'):
|
83 |
+
self.validate_environment_variables()
|
84 |
+
self.qdrant_db = Qdrant.from_documents(
|
85 |
+
documents,
|
86 |
+
embeddings,
|
87 |
+
url=os.getenv("QDRANT_URL"),
|
88 |
+
prefer_grpc=True,
|
89 |
+
api_key=os.getenv(
|
90 |
+
"QDRANT_API_KEY"),
|
91 |
+
collection_name=collection_name,
|
92 |
+
force_recreate=True)
|
93 |
+
|
94 |
+
def validate_environment_variables(self):
|
95 |
+
required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
|
96 |
+
for var in required_vars:
|
97 |
+
if not os.getenv(var):
|
98 |
+
raise EnvironmentError(f"Missing environment variable: {var}")
|
99 |
+
|
100 |
+
def get_db(self):
|
101 |
+
return self.qdrant_db
|
102 |
+
|
103 |
+
|
104 |
+
class SparseVectorStore:
|
105 |
+
"""Store sparse vectors in Qdrant vector database using SPLADE neural retrieval model."""
|
106 |
+
|
107 |
+
def __init__(self, documents: list[Document], collection_name: str, vector_name: str, k: int = 4, splade_model_id: str = "naver/splade-cocondenser-ensembledistil"):
|
108 |
+
self.validate_environment_variables()
|
109 |
+
self.client = QdrantClient(url=os.getenv(
|
110 |
+
"QDRANT_URL"), api_key=os.getenv("QDRANT_API_KEY"))
|
111 |
+
self.model_id = splade_model_id
|
112 |
+
self.tokenizer, self.model = self.set_tokenizer_config()
|
113 |
+
self.collection_name = collection_name
|
114 |
+
self.vector_name = vector_name
|
115 |
+
self.k = k
|
116 |
+
self.sparse_retriever = self.create_sparse_retriever()
|
117 |
+
self.add_documents(documents)
|
118 |
+
|
119 |
+
def validate_environment_variables(self):
|
120 |
+
required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
|
121 |
+
for var in required_vars:
|
122 |
+
if not os.getenv(var):
|
123 |
+
raise EnvironmentError(f"Missing environment variable: {var}")
|
124 |
+
|
125 |
+
@cache
|
126 |
+
def set_tokenizer_config(self):
|
127 |
+
"""Initialize the tokenizer and the SPLADE neural retrieval model.
|
128 |
+
See to https://huggingface.co/naver/splade-cocondenser-ensembledistil for more details.
|
129 |
+
"""
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
131 |
+
model = AutoModelForMaskedLM.from_pretrained(self.model_id)
|
132 |
+
return tokenizer, model
|
133 |
+
|
134 |
+
@cache
|
135 |
+
def sparse_encoder(self, text: str) -> tuple[list[int], list[float]]:
|
136 |
+
"""This function encodes the input text into a sparse vector. The sparse_encoder is required for the QdrantSparseVectorRetriever.
|
137 |
+
Adapted from the Qdrant documentation: Computing the Sparse Vector code.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
text (str): Text to encode
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
tuple[list[int], list[float]]: Indices and values of the sparse vector
|
144 |
+
"""
|
145 |
+
tokens = self.tokenizer(
|
146 |
+
text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
147 |
+
output = self.model(**tokens)
|
148 |
+
logits, attention_mask = output.logits, tokens.attention_mask
|
149 |
+
relu_log = torch.log(1 + torch.relu(logits))
|
150 |
+
weighted_log = relu_log * attention_mask.unsqueeze(-1)
|
151 |
+
max_val, _ = torch.max(weighted_log, dim=1)
|
152 |
+
vec = max_val.squeeze()
|
153 |
+
|
154 |
+
indices = vec.nonzero().numpy().flatten()
|
155 |
+
values = vec.detach().numpy()[indices]
|
156 |
+
|
157 |
+
return indices.tolist(), values.tolist()
|
158 |
+
|
159 |
+
def create_sparse_retriever(self):
|
160 |
+
self.client.recreate_collection(
|
161 |
+
self.collection_name,
|
162 |
+
vectors_config={},
|
163 |
+
sparse_vectors_config={
|
164 |
+
self.vector_name: models.SparseVectorParams(
|
165 |
+
index=models.SparseIndexParams(
|
166 |
+
on_disk=False,
|
167 |
+
)
|
168 |
+
)
|
169 |
+
},
|
170 |
+
)
|
171 |
+
|
172 |
+
return QdrantSparseVectorRetriever(
|
173 |
+
client=self.client,
|
174 |
+
collection_name=self.collection_name,
|
175 |
+
sparse_vector_name=self.vector_name,
|
176 |
+
sparse_encoder=self.sparse_encoder,
|
177 |
+
k=self.k,
|
178 |
+
)
|
179 |
+
|
180 |
+
def add_documents(self, documents):
|
181 |
+
self.sparse_retriever.add_documents(documents)
|
182 |
+
|
183 |
+
|
184 |
+
def main():
|
185 |
+
data_dir = Path().resolve().parent / "data"
|
186 |
+
if not data_dir.exists():
|
187 |
+
sys.exit(f"The directory {data_dir} does not exist.")
|
188 |
+
|
189 |
+
processor = DataProcessor(data_dir)
|
190 |
+
|
191 |
+
print("Loading and cleaning Practitioners data...")
|
192 |
+
practitioners_dataset = processor.load_practitioners_data()
|
193 |
+
|
194 |
+
print("Loading Tall Tree data from json file...")
|
195 |
+
tall_tree_dataset = processor.load_tall_tree_data()
|
196 |
+
|
197 |
+
# Set OpenAI embeddings model
|
198 |
+
# TODO: Test new embeddings model text-embedding-3-small
|
199 |
+
embeddings_model = "text-embedding-ada-002"
|
200 |
+
openai_embeddings = OpenAIEmbeddings(model=embeddings_model)
|
201 |
+
|
202 |
+
# Store both datasets in Qdrant
|
203 |
+
print(f"Storing dense vectors in Qdrant using {embeddings_model}...")
|
204 |
+
practitioners_db = DenseVectorStore(practitioners_dataset,
|
205 |
+
openai_embeddings,
|
206 |
+
collection_name="practitioners_db").get_db()
|
207 |
+
|
208 |
+
tall_tree_db = DenseVectorStore(tall_tree_dataset,
|
209 |
+
openai_embeddings,
|
210 |
+
collection_name="tall_tree_db").get_db()
|
211 |
+
|
212 |
+
print(f"Storing sparse vectors in Qdrant using SPLADE neural retrieval model...")
|
213 |
+
practitioners_sparse_vector_db = SparseVectorStore(
|
214 |
+
documents=practitioners_dataset,
|
215 |
+
collection_name="practitioners_db_sparse_collection",
|
216 |
+
vector_name="sparse_vector",
|
217 |
+
k=15,
|
218 |
+
splade_model_id="naver/splade-cocondenser-ensembledistil",
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
main()
|