Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
yrobel-lima
commited on
Commit
β’
9181031
1
Parent(s):
6cc96e7
Upload app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
-
import logging
|
2 |
-
from concurrent.futures import ThreadPoolExecutor
|
3 |
-
|
4 |
import openai
|
5 |
import streamlit as st
|
6 |
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
|
|
|
|
|
|
|
7 |
|
8 |
from rag.runnable import get_runnable
|
9 |
from utils.error_message_template import ERROR_MESSAGE
|
10 |
|
11 |
-
logging.basicConfig(level=logging.ERROR)
|
12 |
-
|
13 |
# Streamlit page configuration
|
14 |
st.set_page_config(
|
15 |
page_title="ELLA AI Assistant",
|
@@ -24,33 +22,24 @@ with open("styles/styles.css") as css:
|
|
24 |
|
25 |
|
26 |
# Get runnable and memory
|
27 |
-
|
|
|
28 |
try:
|
29 |
-
return get_runnable(model="gpt-
|
30 |
except Exception:
|
31 |
st.warning(ERROR_MESSAGE, icon="π")
|
32 |
st.stop()
|
33 |
|
34 |
|
35 |
-
|
36 |
-
if "executor" not in st.session_state:
|
37 |
-
st.session_state.executor = ThreadPoolExecutor(max_workers=4)
|
38 |
|
39 |
-
executor = st.session_state.executor
|
40 |
-
|
41 |
-
# Submit initialization task if not already done
|
42 |
-
if "initialization_future" not in st.session_state:
|
43 |
-
st.session_state["initialization_future"] = executor.submit(
|
44 |
-
initialize_runnable_and_memory
|
45 |
-
)
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
if
|
50 |
-
st.session_state["
|
51 |
-
|
52 |
|
53 |
-
# Other session state variables
|
54 |
if "messages" not in st.session_state:
|
55 |
st.session_state["messages"] = []
|
56 |
|
@@ -96,14 +85,14 @@ user_input = st.chat_input(
|
|
96 |
"Ask ELLA...", disabled=st.session_state["disable_chat_input"]
|
97 |
)
|
98 |
|
99 |
-
if user_input
|
100 |
st.session_state["messages"].append(ChatMessage(role="user", content=user_input))
|
101 |
prompt = f"{user_input}\nLocation preference: {st.session_state.selected_location}."
|
102 |
|
103 |
else:
|
104 |
prompt = None
|
105 |
|
106 |
-
#
|
107 |
user_avatar = "images/user.png"
|
108 |
ai_avatar = "images/tall-tree-logo.png"
|
109 |
for msg in st.session_state["messages"]:
|
@@ -111,19 +100,26 @@ for msg in st.session_state["messages"]:
|
|
111 |
with st.chat_message(msg.role, avatar=avatar):
|
112 |
st.markdown(msg.content)
|
113 |
|
114 |
-
# Chat interface
|
115 |
-
if
|
116 |
-
#
|
|
|
|
|
|
|
|
|
|
|
117 |
with st.chat_message("assistant", avatar=ai_avatar):
|
118 |
message_placeholder = st.empty()
|
119 |
-
try:
|
120 |
-
response = ""
|
121 |
-
with st.spinner(" "):
|
122 |
-
for chunk in st.session_state["runnable"].stream({"message": prompt}):
|
123 |
-
response += chunk
|
124 |
-
message_placeholder.markdown(response + "|")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except openai.BadRequestError:
|
128 |
st.warning(ERROR_MESSAGE, icon="π")
|
129 |
st.stop()
|
@@ -131,17 +127,60 @@ if "runnable" in st.session_state and prompt:
|
|
131 |
st.warning(ERROR_MESSAGE, icon="π")
|
132 |
st.stop()
|
133 |
|
134 |
-
# Add response to the
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
st.session_state["messages"].append(
|
136 |
-
ChatMessage(role="assistant", content=
|
137 |
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import openai
|
2 |
import streamlit as st
|
3 |
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
|
4 |
+
from langchain_core.tracers.context import collect_runs
|
5 |
+
from langsmith import Client
|
6 |
+
from streamlit_feedback import streamlit_feedback
|
7 |
|
8 |
from rag.runnable import get_runnable
|
9 |
from utils.error_message_template import ERROR_MESSAGE
|
10 |
|
|
|
|
|
11 |
# Streamlit page configuration
|
12 |
st.set_page_config(
|
13 |
page_title="ELLA AI Assistant",
|
|
|
22 |
|
23 |
|
24 |
# Get runnable and memory
|
25 |
+
@st.cache_resource(show_spinner=False)
|
26 |
+
def get_runnable_and_memory():
|
27 |
try:
|
28 |
+
return get_runnable(model="gpt-4-turbo", temperature=0)
|
29 |
except Exception:
|
30 |
st.warning(ERROR_MESSAGE, icon="π")
|
31 |
st.stop()
|
32 |
|
33 |
|
34 |
+
chain, memory = get_runnable_and_memory()
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Set up session state variables
|
38 |
+
# Clean memory (important! to clean the memory at the end of each session)
|
39 |
+
if "history" not in st.session_state:
|
40 |
+
st.session_state["history"] = []
|
41 |
+
memory.clear()
|
42 |
|
|
|
43 |
if "messages" not in st.session_state:
|
44 |
st.session_state["messages"] = []
|
45 |
|
|
|
85 |
"Ask ELLA...", disabled=st.session_state["disable_chat_input"]
|
86 |
)
|
87 |
|
88 |
+
if user_input:
|
89 |
st.session_state["messages"].append(ChatMessage(role="user", content=user_input))
|
90 |
prompt = f"{user_input}\nLocation preference: {st.session_state.selected_location}."
|
91 |
|
92 |
else:
|
93 |
prompt = None
|
94 |
|
95 |
+
# Display previous messages
|
96 |
user_avatar = "images/user.png"
|
97 |
ai_avatar = "images/tall-tree-logo.png"
|
98 |
for msg in st.session_state["messages"]:
|
|
|
100 |
with st.chat_message(msg.role, avatar=avatar):
|
101 |
st.markdown(msg.content)
|
102 |
|
103 |
+
# Chat interface
|
104 |
+
if prompt:
|
105 |
+
# Add all previous messages to memory
|
106 |
+
for human, ai in st.session_state["history"]:
|
107 |
+
memory.chat_memory.add_user_message(HumanMessage(content=human))
|
108 |
+
memory.chat_memory.add_ai_message(AIMessage(content=ai))
|
109 |
+
|
110 |
+
# render the assistant's response
|
111 |
with st.chat_message("assistant", avatar=ai_avatar):
|
112 |
message_placeholder = st.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
try:
|
115 |
+
partial_message = ""
|
116 |
+
# Collect runs for feedback using Langsmith.
|
117 |
+
with st.spinner(" "), collect_runs() as cb:
|
118 |
+
for chunk in chain.stream({"message": prompt}):
|
119 |
+
partial_message += chunk
|
120 |
+
message_placeholder.markdown(partial_message + "|")
|
121 |
+
st.session_state.run_id = cb.traced_runs[0].id
|
122 |
+
message_placeholder.markdown(partial_message)
|
123 |
except openai.BadRequestError:
|
124 |
st.warning(ERROR_MESSAGE, icon="π")
|
125 |
st.stop()
|
|
|
127 |
st.warning(ERROR_MESSAGE, icon="π")
|
128 |
st.stop()
|
129 |
|
130 |
+
# Add the full response to the history
|
131 |
+
st.session_state["history"].append((prompt, partial_message))
|
132 |
+
|
133 |
+
# Add AI message to memory after the response is generated
|
134 |
+
memory.chat_memory.add_ai_message(AIMessage(content=partial_message))
|
135 |
+
|
136 |
+
# Add the full response to the message history
|
137 |
st.session_state["messages"].append(
|
138 |
+
ChatMessage(role="assistant", content=partial_message)
|
139 |
)
|
140 |
|
141 |
+
|
142 |
+
# Feedback system using streamlit-feedback and Langsmith
|
143 |
+
|
144 |
+
# Langsmith client for the feedback system
|
145 |
+
ls_client = Client()
|
146 |
+
|
147 |
+
# Feedback option
|
148 |
+
feedback_option = "thumbs"
|
149 |
+
|
150 |
+
if st.session_state.get("run_id"):
|
151 |
+
run_id = st.session_state.run_id
|
152 |
+
feedback = streamlit_feedback(
|
153 |
+
feedback_type=feedback_option,
|
154 |
+
optional_text_label="[Optional] Please provide an explanation",
|
155 |
+
key=f"feedback_{run_id}",
|
156 |
+
)
|
157 |
+
score_mappings = {
|
158 |
+
"thumbs": {"π": 1, "π": 0},
|
159 |
+
"faces": {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0},
|
160 |
+
}
|
161 |
+
|
162 |
+
# Get the score mapping based on the selected feedback option
|
163 |
+
scores = score_mappings[feedback_option]
|
164 |
+
|
165 |
+
if feedback:
|
166 |
+
# Get the score from the selected feedback option's score mapping
|
167 |
+
score = scores.get(feedback["score"])
|
168 |
+
|
169 |
+
if score is not None:
|
170 |
+
# Formulate feedback type string incorporating the feedback option
|
171 |
+
# and score value
|
172 |
+
feedback_type_str = f"{feedback_option} {feedback['score']}"
|
173 |
+
|
174 |
+
# Record the feedback with the formulated feedback type string
|
175 |
+
feedback_record = ls_client.create_feedback(
|
176 |
+
run_id,
|
177 |
+
feedback_type_str,
|
178 |
+
score=score,
|
179 |
+
comment=feedback.get("text"),
|
180 |
+
)
|
181 |
+
st.session_state.feedback = {
|
182 |
+
"feedback_id": str(feedback_record.id),
|
183 |
+
"score": score,
|
184 |
+
}
|
185 |
+
else:
|
186 |
+
st.warning("Invalid feedback score.")
|