talltree's picture
Update app.py
e324a35 verified
raw
history blame
7.25 kB
import openai
import streamlit as st
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
from langchain_core.tracers.context import collect_runs
from langsmith import Client
from streamlit_feedback import streamlit_feedback
from rag_chain.chain import get_rag_chain
# Langsmith client for the feedback system
client = Client()
# Streamlit page configuration
st.set_page_config(page_title="Tall Tree Health",
page_icon="πŸ’¬",
layout="centered",
initial_sidebar_state="expanded")
# Streamlit CSS configuration
with open("styles/styles.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
# Error message templates
base_error_message = (
"Oops! Something went wrong while processing your request. "
"Please refresh the page or try again later.\n\n"
"If the error persists, please contact us at "
"[Tall Tree Health](https://www.talltreehealth.ca/contact-us)."
)
openai_api_error_message = (
"We're sorry, but you've reached the maximum number of requests allowed per session.\n\n"
"Please refresh the page to continue using the app."
)
# Get chain and memory
@st.cache_resource(show_spinner=False)
def get_chain_and_memory():
try:
# gpt-4 points to gpt-4-0613
# gpt-4-turbo-preview points to gpt-4-0125-preview
# Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED
# gpt-4-1106-preview
return get_rag_chain(model_name="gpt-4-turbo-preview", temperature=0.2)
except Exception as e:
st.warning(base_error_message, icon="πŸ™")
st.stop()
chain, memory = get_chain_and_memory()
# Set up session state and clean memory (important to clean the memory at the end of each session)
if "history" not in st.session_state:
st.session_state["history"] = []
memory.clear()
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Add delimiter between sidebar expander and the welcome message
st.text("\n" * 4)
# Select locations element into a container
with st.container(border=False):
# Set the welcome message
st.markdown(
"Hello there! πŸ‘‹ Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n"
"To get started, please select your preferred location and share details about your symptoms or needs. "
)
location = st.radio(
"**Our Locations**:",
["Cordova Bay - Victoria", "James Bay - Victoria",
"Comercial Drive - Vancouver"],
index=None, horizontal=False,
)
# Add delimiter between the container and the chat interface
st.text("\n" * 4)
# Get user input only if a location is selected
prompt = ""
if location:
user_input = st.chat_input("Enter your message...")
if user_input:
st.session_state["messages"].append(
ChatMessage(role="user", content=user_input))
prompt = f"{user_input}\nLocation: {location}"
# Display previous messages
user_avatar = "images/user.png"
ai_avatar = "images/tall-tree-logo.png"
for msg in st.session_state["messages"]:
avatar = user_avatar if msg.role == 'user' else ai_avatar
with st.chat_message(msg.role, avatar=avatar):
st.markdown(msg.content)
# Chat interface
if prompt:
# Add all previous messages to memory
for human, ai in st.session_state["history"]:
memory.chat_memory.add_user_message(HumanMessage(content=human))
memory.chat_memory.add_ai_message(AIMessage(content=ai))
# render the assistant's response
with st.chat_message("assistant", avatar=ai_avatar):
message_placeholder = st.empty()
try:
partial_message = ""
# Collect runs for feedback using Langsmith
with st.spinner(" "), collect_runs() as cb:
for chunk in chain.stream({"message": prompt}):
partial_message += chunk
message_placeholder.markdown(partial_message + "|")
st.session_state.run_id = cb.traced_runs[0].id
message_placeholder.markdown(partial_message)
except openai.BadRequestError:
st.warning(openai_api_error_message, icon="πŸ™")
st.stop()
except Exception as e:
st.warning(base_error_message, icon="πŸ™")
st.stop()
# Add the full response to the history
st.session_state["history"].append((prompt, partial_message))
# Add AI message to memory after the response is generated
memory.chat_memory.add_ai_message(AIMessage(content=partial_message))
# Add the full response to the message history
st.session_state["messages"].append(ChatMessage(
role="assistant", content=partial_message))
# Feedback system using streamlit feedback and Langsmith
# Add a sidebar
st.sidebar.markdown(
"""
**Your Feedback Matters!**
We provide a feedback mechanism directly within the AI Assistant to help us improve accuracy and other performance issues.
This is an ongoing process, and we will continue to work together to harness the power of this new technology responsibly.
**Rate the Response Quality:**
- **πŸ‘ Thumbs Up**: The assistant's response is clear, complete, and helpful.
- **πŸ‘Ž Thumbs Down**: The assistant's response is unclear, incomplete, or unhelpful.
Thank you! Let's get started. πŸš€
**Note**:\n\n
This AI assistant is designed to provide guidance and general information about the services offered by Tall Tree Health.
It is not intended for seeking medical advice and should not be used as such.
The information provided by this generative AI technology cannot replace the advice of qualified healthcare professionals.
"""
)
# Get the feedback option
feedback_option = "thumbs"
if st.session_state.get("run_id"):
run_id = st.session_state.run_id
feedback = streamlit_feedback(
feedback_type=feedback_option,
optional_text_label="[Optional] Please provide an explanation",
key=f"feedback_{run_id}",
)
score_mappings = {
"thumbs": {"πŸ‘": 1, "πŸ‘Ž": 0},
"faces": {"πŸ˜€": 1, "πŸ™‚": 0.75, "😐": 0.5, "πŸ™": 0.25, "😞": 0},
}
# Get the score mapping based on the selected feedback option
scores = score_mappings[feedback_option]
if feedback:
# Get the score from the selected feedback option's score mapping
score = scores.get(feedback["score"])
if score is not None:
# Formulate feedback type string incorporating the feedback option
# and score value
feedback_type_str = f"{feedback_option} {feedback['score']}"
# Record the feedback with the formulated feedback type string
feedback_record = client.create_feedback(
run_id,
feedback_type_str,
score=score,
comment=feedback.get("text"),
)
st.session_state.feedback = {
"feedback_id": str(feedback_record.id),
"score": score,
}
else:
st.warning("Invalid feedback score.")