Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import openai | |
import streamlit as st | |
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage | |
from langchain_core.tracers.context import collect_runs | |
from langsmith import Client | |
from streamlit_feedback import streamlit_feedback | |
from rag_chain.chain import get_rag_chain | |
# Langsmith client for the feedback system | |
client = Client() | |
# Streamlit page configuration | |
st.set_page_config(page_title="Tall Tree Health", | |
page_icon="π¬", | |
layout="centered", | |
initial_sidebar_state="expanded") | |
# Streamlit CSS configuration | |
with open("styles/styles.css") as css: | |
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True) | |
# Error message templates | |
base_error_message = ( | |
"Oops! Something went wrong while processing your request. " | |
"Please refresh the page or try again later.\n\n" | |
"If the error persists, please contact us at " | |
"[Tall Tree Health](https://www.talltreehealth.ca/contact-us)." | |
) | |
openai_api_error_message = ( | |
"We're sorry, but you've reached the maximum number of requests allowed per session.\n\n" | |
"Please refresh the page to continue using the app." | |
) | |
# Get chain and memory | |
def get_chain_and_memory(): | |
try: | |
# gpt-4 points to gpt-4-0613 | |
# gpt-4-turbo-preview points to gpt-4-0125-preview | |
# Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED | |
# gpt-4-1106-preview | |
return get_rag_chain(model_name="gpt-4-turbo-preview", temperature=0.2) | |
except Exception as e: | |
st.warning(base_error_message, icon="π") | |
st.stop() | |
chain, memory = get_chain_and_memory() | |
# Set up session state and clean memory (important to clean the memory at the end of each session) | |
if "history" not in st.session_state: | |
st.session_state["history"] = [] | |
memory.clear() | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] | |
# Add delimiter between sidebar expander and the welcome message | |
st.text("\n" * 4) | |
# Select locations element into a container | |
with st.container(border=False): | |
# Set the welcome message | |
st.markdown( | |
"Hello there! π Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n" | |
"To get started, please select your preferred location and share details about your symptoms or needs. " | |
) | |
location = st.radio( | |
"**Our Locations**:", | |
["Cordova Bay - Victoria", "James Bay - Victoria", | |
"Comercial Drive - Vancouver"], | |
index=None, horizontal=False, | |
) | |
# Add delimiter between the container and the chat interface | |
st.text("\n" * 4) | |
# Get user input only if a location is selected | |
prompt = "" | |
if location: | |
user_input = st.chat_input("Enter your message...") | |
if user_input: | |
st.session_state["messages"].append( | |
ChatMessage(role="user", content=user_input)) | |
prompt = f"{user_input}\nLocation: {location}" | |
# Display previous messages | |
user_avatar = "images/user.png" | |
ai_avatar = "images/tall-tree-logo.png" | |
for msg in st.session_state["messages"]: | |
avatar = user_avatar if msg.role == 'user' else ai_avatar | |
with st.chat_message(msg.role, avatar=avatar): | |
st.markdown(msg.content) | |
# Chat interface | |
if prompt: | |
# Add all previous messages to memory | |
for human, ai in st.session_state["history"]: | |
memory.chat_memory.add_user_message(HumanMessage(content=human)) | |
memory.chat_memory.add_ai_message(AIMessage(content=ai)) | |
# render the assistant's response | |
with st.chat_message("assistant", avatar=ai_avatar): | |
message_placeholder = st.empty() | |
try: | |
partial_message = "" | |
# Collect runs for feedback using Langsmith | |
with st.spinner(" "), collect_runs() as cb: | |
for chunk in chain.stream({"message": prompt}): | |
partial_message += chunk | |
message_placeholder.markdown(partial_message + "|") | |
st.session_state.run_id = cb.traced_runs[0].id | |
message_placeholder.markdown(partial_message) | |
except openai.BadRequestError: | |
st.warning(openai_api_error_message, icon="π") | |
st.stop() | |
except Exception as e: | |
st.warning(base_error_message, icon="π") | |
st.stop() | |
# Add the full response to the history | |
st.session_state["history"].append((prompt, partial_message)) | |
# Add AI message to memory after the response is generated | |
memory.chat_memory.add_ai_message(AIMessage(content=partial_message)) | |
# Add the full response to the message history | |
st.session_state["messages"].append(ChatMessage( | |
role="assistant", content=partial_message)) | |
# Feedback system using streamlit feedback and Langsmith | |
# Add a sidebar | |
st.sidebar.markdown( | |
""" | |
**Your Feedback Matters!** | |
We provide a feedback mechanism directly within the AI Assistant to help us improve accuracy and other performance issues. | |
This is an ongoing process, and we will continue to work together to harness the power of this new technology responsibly. | |
**Rate the Response Quality:** | |
- **π Thumbs Up**: The assistant's response is clear, complete, and helpful. | |
- **π Thumbs Down**: The assistant's response is unclear, incomplete, or unhelpful. | |
Thank you! Let's get started. π | |
**Note**:\n\n | |
This AI assistant is designed to provide guidance and general information about the services offered by Tall Tree Health. | |
It is not intended for seeking medical advice and should not be used as such. | |
The information provided by this generative AI technology cannot replace the advice of qualified healthcare professionals. | |
""" | |
) | |
# Get the feedback option | |
feedback_option = "thumbs" | |
if st.session_state.get("run_id"): | |
run_id = st.session_state.run_id | |
feedback = streamlit_feedback( | |
feedback_type=feedback_option, | |
optional_text_label="[Optional] Please provide an explanation", | |
key=f"feedback_{run_id}", | |
) | |
score_mappings = { | |
"thumbs": {"π": 1, "π": 0}, | |
"faces": {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}, | |
} | |
# Get the score mapping based on the selected feedback option | |
scores = score_mappings[feedback_option] | |
if feedback: | |
# Get the score from the selected feedback option's score mapping | |
score = scores.get(feedback["score"]) | |
if score is not None: | |
# Formulate feedback type string incorporating the feedback option | |
# and score value | |
feedback_type_str = f"{feedback_option} {feedback['score']}" | |
# Record the feedback with the formulated feedback type string | |
feedback_record = client.create_feedback( | |
run_id, | |
feedback_type_str, | |
score=score, | |
comment=feedback.get("text"), | |
) | |
st.session_state.feedback = { | |
"feedback_id": str(feedback_record.id), | |
"score": score, | |
} | |
else: | |
st.warning("Invalid feedback score.") | |