Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,690 Bytes
561f679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import logging
import os
import random
from datetime import datetime
from functools import lru_cache
from typing import Sequence
from zoneinfo import ZoneInfo
import langsmith
from langchain_core.documents import Document
from langchain_community.document_transformers import LongContextReorder
from langchain.retrievers.document_compressors import FlashrankRerank
logging.basicConfig(level=logging.ERROR)
class DocumentFormatter:
def __init__(self, prefix: str):
self.prefix = prefix
def __call__(self, docs: list[Document]) -> str:
return "\n---\n".join(
[
f"- {self.prefix} {i+1}:\n\n\t" + d.page_content
for i, d in enumerate(docs)
]
)
def get_datetime() -> str:
return datetime.now(ZoneInfo("America/Vancouver")).strftime("%A, %Y-%b-%d %H:%M:%S")
def reorder_documents(docs: list[Document]) -> Sequence[Document]:
return LongContextReorder().transform_documents(docs)
def randomize_documents(documents: list[Document]) -> list[Document]:
random.shuffle(documents)
return documents
def create_langsmith_client():
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = "talltree-ai-assistant"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
langsmith_api_key = os.getenv("LANGCHAIN_API_KEY")
if not langsmith_api_key:
raise EnvironmentError("Missing environment variable: LANGCHAIN_API_KEY")
return langsmith.Client()
@lru_cache(maxsize=1)
def get_reranker(
top_n: int = 3, model: str = "ms-marco-MiniLM-L-12-v2"
) -> FlashrankRerank:
return FlashrankRerank(top_n=top_n, model=model)
|