Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,057 Bytes
6e20157 d612275 6e20157 d612275 6e20157 d612275 6e20157 d612275 6e20157 d6746de 6e20157 d6746de 6e20157 d612275 6e20157 d612275 6e20157 d612275 6e20157 d612275 6e20157 d612275 6e20157 d6746de 6e20157 d612275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
from functools import cache
import qdrant_client
import torch
from langchain.prompts import PromptTemplate
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_community.retrievers import QdrantSparseVectorRetriever
from langchain_community.vectorstores import Qdrant
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings
from transformers import AutoModelForMaskedLM, AutoTokenizer
class DenseRetrieverClient:
"""Inititalize the dense retriever using OpenAI text embeddings and Qdrant vector database.
Attributes:
embeddings_model (str): The embeddings model to use. Right now only OpenAI text embeddings.
collection_name (str): Qdrant collection name.
client (QdrantClient): Qdrant client.
qdrant_collection (Qdrant): Qdrant collection.
"""
def __init__(self, embeddings_model: str = "text-embedding-ada-002", collection_name: str = "practitioners_db"):
self.validate_environment_variables()
self.embeddings_model = embeddings_model
self.collection_name = collection_name
self.client = qdrant_client.QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=True,
)
self.qdrant_collection = self.load_qdrant_collection()
def validate_environment_variables(self):
""" Check if the Qdrant environment variables are set."""
required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
for var in required_vars:
if not os.getenv(var):
raise EnvironmentError(f"Missing environment variable: {var}")
def set_qdrant_collection(self, embeddings):
"""Prepare the Qdrant collection for the embeddings model."""
return Qdrant(client=self.client,
collection_name=self.collection_name,
embeddings=embeddings)
@cache
def load_qdrant_collection(self):
"""Load Qdrant collection for a given embeddings model."""
# TODO: Test new OpenAI text embeddings models
openai_text_embeddings = ["text-embedding-ada-002"]
if self.embeddings_model in openai_text_embeddings:
self.qdrant_collection = self.set_qdrant_collection(
OpenAIEmbeddings(model=self.embeddings_model))
else:
raise ValueError(
f"Invalid embeddings model: {self.embeddings_model}. Valid options are {', '.join(openai_text_embeddings)}.")
return self.qdrant_collection
def get_dense_retriever(self, search_type: str = "similarity", k: int = 4):
"""Set up retrievers (Qdrant vectorstore as retriever).
Args:
search_type (str, optional): similarity or mmr. Defaults to "similarity".
k (int, optional): Number of documents retrieved. Defaults to 4.
Returns:
Retriever: Vectorstore as a retriever
"""
dense_retriever = self.qdrant_collection.as_retriever(search_type=search_type,
search_kwargs={
"k": k}
)
return dense_retriever
class SparseRetrieverClient:
"""Inititalize the sparse retriever using the SPLADE neural retrieval model and Qdrant vector database.
Attributes:
collection_name (str): Qdrant collection name.
vector_name (str): Qdrant vector name.
splade_model_id (str): The SPLADE neural retrieval model id.
k (int): Number of documents retrieved.
client (QdrantClient): Qdrant client.
"""
def __init__(self, collection_name: str, vector_name: str, splade_model_id: str = "naver/splade-cocondenser-ensembledistil", k: int = 15):
self.validate_environment_variables()
self.client = qdrant_client.QdrantClient(url=os.getenv(
"QDRANT_URL"), api_key=os.getenv("QDRANT_API_KEY"))
self.model_id = splade_model_id
self.tokenizer, self.model = self.set_tokenizer_config()
self.collection_name = collection_name
self.vector_name = vector_name
self.k = k
def validate_environment_variables(self):
required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
for var in required_vars:
if not os.getenv(var):
raise EnvironmentError(f"Missing environment variable: {var}")
@cache
def set_tokenizer_config(self):
"""Initialize the tokenizer and the SPLADE neural retrieval model.
See to https://huggingface.co./naver/splade-cocondenser-ensembledistil for more details.
"""
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
model = AutoModelForMaskedLM.from_pretrained(self.model_id)
return tokenizer, model
def sparse_encoder(self, text: str) -> tuple[list[int], list[float]]:
"""This function encodes the input text into a sparse vector. The encoder is required for the QdrantSparseVectorRetriever.
Adapted from the Qdrant documentation: Computing the Sparse Vector code.
Args:
text (str): Text to encode
Returns:
tuple[list[int], list[float]]: Indices and values of the sparse vector
"""
tokens = self.tokenizer(text, return_tensors="pt",
max_length=512, padding="max_length", truncation=True)
with torch.no_grad():
output = self.model(**tokens)
logits, attention_mask = output.logits, tokens.attention_mask
relu_log = torch.log1p(torch.relu(logits))
weighted_log = relu_log * attention_mask.unsqueeze(-1)
max_val, _ = torch.max(weighted_log, dim=1)
vec = max_val.squeeze()
indices = torch.nonzero(vec, as_tuple=False).squeeze().cpu().numpy()
values = vec[indices].cpu().numpy()
return indices.tolist(), values.tolist()
def get_sparse_retriever(self):
sparse_retriever = QdrantSparseVectorRetriever(
client=self.client,
collection_name=self.collection_name,
sparse_vector_name=self.vector_name,
sparse_encoder=self.sparse_encoder,
k=self.k,
)
return sparse_retriever
def compression_retriever_setup(base_retriever, embeddings_model: str = "text-embedding-ada-002", similarity_threshold: float = 0.76) -> ContextualCompressionRetriever:
"""
Creates a ContextualCompressionRetriever with a base retriever and a similarity threshold.
The ContextualCompressionRetriever uses an EmbeddingsFilter with OpenAIEmbeddings to filter out documents
with a similarity score below the given threshold.
Args:
base_retriever: Retriever to be filtered.
similarity_threshold (float, optional): The similarity threshold for the EmbeddingsFilter.
Documents with a similarity score below this threshold will be filtered out. Defaults to 0.76 (Obtained by experimenting with text-embeddings-ada-002).
** Be careful with this parameter, as it can have a big impact on the results and highly depends on the embeddings model used.
Returns:
ContextualCompressionRetriever: The created ContextualCompressionRetriever.
"""
# Set up compression retriever (filter out documents with low similarity)
relevant_filter = EmbeddingsFilter(embeddings=OpenAIEmbeddings(model=embeddings_model),
similarity_threshold=similarity_threshold)
compression_retriever = ContextualCompressionRetriever(
base_compressor=relevant_filter, base_retriever=base_retriever
)
return compression_retriever
def multi_query_retriever_setup(retriever) -> MultiQueryRetriever:
""" Configure a multi-query retriever using a base retriever and the LLM.
Args:
retriever:
Returns:
retriever: MultiQueryRetriever
"""
QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""
Your task is to generate 3 different versions of the provided question, incorporating the user's location preference in each version. Each version must be separated by newlines. Ensure that no part of your response is enclosed in quotation marks. Do not modify any acronyms or unfamiliar terms. Keep your responses clear, concise, and limited to these alternatives.
Note: The text provided are queries to Tall Tree Health Centre's AI virtual assistant.
Question:
{question}
""",
)
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
multi_query_retriever = MultiQueryRetriever.from_llm(
retriever=retriever, llm=llm, prompt=QUERY_PROMPT, include_original=True,
)
return multi_query_retriever
|