Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,493 Bytes
3403534 31652af 3403534 31652af 3403534 b228d0c 3403534 31652af 3403534 31652af 3403534 31652af 3403534 31652af 3403534 31652af 3403534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import openai
import streamlit as st
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
from rag_chain.chain import get_rag_chain
# Streamlit page configuration
st.set_page_config(page_title="Tall Tree Integrated Health",
page_icon="π¬",
layout="centered",
initial_sidebar_state="collapsed")
# Streamlit CSS configuration
with open("styles/styles.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
# Error message templates
base_error_message = (
"Oops! Something went wrong while processing your request. "
"Please refresh the page or try again later.\n\n"
"If the error persists, please contact us at "
"[Tall Tree Health](https://www.talltreehealth.ca/contact-us)."
)
openai_api_error_message = (
"We're sorry, but you've reached the maximum number of requests allowed per session.\n\n"
"Please refresh the page to continue using the app."
)
# Get chain and memory
@st.cache_resource(show_spinner=False)
def get_chain_and_memory():
try:
# gpt-4 points to gpt-4-0613
# gpt-4-turbo-preview points to gpt-4-0125-preview
# Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED
# gpt-4-1106-preview
return get_rag_chain(model_name="gpt-4-1106-preview", temperature=0.2)
except Exception as e:
st.warning(base_error_message, icon="π")
st.stop()
chain, memory = get_chain_and_memory()
# Set up session state and clean memory (important to clean the memory at the end of each session)
if "history" not in st.session_state:
st.session_state["history"] = []
memory.clear()
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Select locations element into a container
with st.container(border=False):
# Set the welcome message
st.markdown(
"Hello there! π Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n"
"To get started, please select your preferred location and share details about your symptoms or needs. "
)
location = st.radio(
"**Our Locations**:",
["Cordova Bay - Victoria", "James Bay - Victoria",
"Comercial Drive - Vancouver"],
index=None, horizontal=False,
)
# Add some space between the container and the chat interface
for _ in range(2):
st.markdown("\n\n")
# Get user input only if a location is selected
prompt = ""
if location:
user_input = st.chat_input("Enter your message...")
if user_input:
st.session_state["messages"].append(
ChatMessage(role="user", content=user_input))
prompt = f"{user_input}\nLocation: {location}"
# Display previous messages
user_avatar = "images/user.png"
ai_avatar = "images/tall-tree-logo.png"
for msg in st.session_state["messages"]:
avatar = user_avatar if msg.role == 'user' else ai_avatar
with st.chat_message(msg.role, avatar=avatar):
st.markdown(msg.content)
# Chat interface
if prompt:
# Add all previous messages to memory
for human, ai in st.session_state["history"]:
memory.chat_memory.add_user_message(HumanMessage(content=human))
memory.chat_memory.add_ai_message(AIMessage(content=ai))
# render the assistant's response
with st.chat_message("assistant", avatar=ai_avatar):
message_placeholder = st.empty()
# If there is a message not None, add it to the memory
try:
partial_message = ""
with st.spinner(" "):
for chunk in chain.stream({"message": prompt}):
partial_message += chunk
message_placeholder.markdown(partial_message + "|")
except openai.BadRequestError:
st.warning(openai_api_error_message, icon="π")
st.stop()
except Exception as e:
st.warning(base_error_message, icon="π")
st.stop()
message_placeholder.markdown(partial_message)
# Add the full response to the history
st.session_state["history"].append((prompt, partial_message))
# Add AI message to memory after the response is generated
memory.chat_memory.add_ai_message(AIMessage(content=partial_message))
# add the full response to the message history
st.session_state["messages"].append(ChatMessage(
role="assistant", content=partial_message))
|