Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,628 Bytes
3403534 61c5e3c 3403534 61c5e3c 3403534 61c5e3c 3403534 31652af 3bf676f 3403534 31652af 3403534 a45b195 3403534 31652af 3403534 61c5e3c 81f2c8b 61c5e3c 3403534 31652af 3403534 31652af 3403534 61c5e3c 81f2c8b 3403534 31652af 3403534 61c5e3c 3403534 31652af 3403534 61c5e3c 259fc63 3bf676f 259fc63 c0d0a66 61c5e3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import openai
import streamlit as st
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
from langchain_core.tracers.context import collect_runs
from langsmith import Client
from streamlit_feedback import streamlit_feedback
from rag_chain.chain import get_rag_chain
client = Client()
# Streamlit page configuration
st.set_page_config(page_title="Tall Tree Health",
page_icon="π¬",
layout="centered",
initial_sidebar_state="expanded")
# Streamlit CSS configuration
with open("styles/styles.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
# Error message templates
base_error_message = (
"Oops! Something went wrong while processing your request. "
"Please refresh the page or try again later.\n\n"
"If the error persists, please contact us at "
"[Tall Tree Health](https://www.talltreehealth.ca/contact-us)."
)
openai_api_error_message = (
"We're sorry, but you've reached the maximum number of requests allowed per session.\n\n"
"Please refresh the page to continue using the app."
)
# Get chain and memory
@st.cache_resource(show_spinner=False)
def get_chain_and_memory():
try:
# gpt-4 points to gpt-4-0613
# gpt-4-turbo-preview points to gpt-4-0125-preview
# Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED
# gpt-4-1106-preview
return get_rag_chain(model_name="gpt-4-turbo-preview", temperature=0.2)
except Exception as e:
st.warning(base_error_message, icon="π")
st.stop()
chain, memory = get_chain_and_memory()
# Set up session state and clean memory (important to clean the memory at the end of each session)
if "history" not in st.session_state:
st.session_state["history"] = []
memory.clear()
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Add delimiter between sidebar expander and the welcome message
st.text("\n" * 4)
# Select locations element into a container
with st.container(border=False):
# Set the welcome message
st.markdown(
"Hello there! π Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n"
"To get started, please select your preferred location and share details about your symptoms or needs. "
)
location = st.radio(
"**Our Locations**:",
["Cordova Bay - Victoria", "James Bay - Victoria",
"Comercial Drive - Vancouver"],
index=None, horizontal=False,
)
# Add delimiter between the container and the chat interface
st.text("\n" * 4)
# Get user input only if a location is selected
prompt = ""
if location:
user_input = st.chat_input("Enter your message...")
if user_input:
st.session_state["messages"].append(
ChatMessage(role="user", content=user_input))
prompt = f"{user_input}\nLocation: {location}"
# Display previous messages
user_avatar = "images/user.png"
ai_avatar = "images/tall-tree-logo.png"
for msg in st.session_state["messages"]:
avatar = user_avatar if msg.role == 'user' else ai_avatar
with st.chat_message(msg.role, avatar=avatar):
st.markdown(msg.content)
# Chat interface
if prompt:
# Add all previous messages to memory
for human, ai in st.session_state["history"]:
memory.chat_memory.add_user_message(HumanMessage(content=human))
memory.chat_memory.add_ai_message(AIMessage(content=ai))
# render the assistant's response
with st.chat_message("assistant", avatar=ai_avatar):
message_placeholder = st.empty()
# If there is a message not None, add it to the memory
try:
partial_message = ""
with st.spinner(" "):
with collect_runs() as cb: # Collect runs for feedback in langsmith
for chunk in chain.stream({"message": prompt}):
partial_message += chunk
message_placeholder.markdown(partial_message + "|")
st.session_state.run_id = cb.traced_runs[0].id
except openai.BadRequestError:
st.warning(openai_api_error_message, icon="π")
st.stop()
except Exception as e:
st.warning(base_error_message, icon="π")
st.stop()
message_placeholder.markdown(partial_message)
# Add the full response to the history
st.session_state["history"].append((prompt, partial_message))
# Add AI message to memory after the response is generated
memory.chat_memory.add_ai_message(AIMessage(content=partial_message))
# add the full response to the message history
st.session_state["messages"].append(ChatMessage(
role="assistant", content=partial_message))
# Feedback system using streamlit feedback and Langsmith
# Add a sidebar
st.sidebar.markdown(
"""
### Your Feedback Matters!
Help us enhance our AI-powered assistant by sharing your feedback.\n\n
**Rate the Response Quality:**
- **π Thumbs Up**: The assistant's response is clear, complete, and helpful.
- **π Thumbs Down**: The assistant's response is unclear, incomplete, or unhelpful.
Thank you! Let's get started. π
"""
)
# Get the feedback option
feedback_option = "thumbs"
if st.session_state.get("run_id"):
run_id = st.session_state.run_id
feedback = streamlit_feedback(
feedback_type=feedback_option,
key=f"feedback_{run_id}",
)
score_mappings = {
"thumbs": {"π": 1, "π": 0},
"faces": {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0},
}
# Get the score mapping based on the selected feedback option
scores = score_mappings[feedback_option]
if feedback:
# Get the score from the selected feedback option's score mapping
score = scores.get(feedback["score"])
if score is not None:
# Formulate feedback type string incorporating the feedback option
# and score value
feedback_type_str = f"{feedback_option} {feedback['score']}"
# Record the feedback with the formulated feedback type string
feedback_record = client.create_feedback(
run_id,
feedback_type_str,
score=score,
)
st.session_state.feedback = {
"feedback_id": str(feedback_record.id),
"score": score,
}
else:
st.warning("Invalid feedback score.")
|