File size: 7,688 Bytes
6e20157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6746de
 
 
6e20157
 
 
 
d6746de
6e20157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6746de
6e20157
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
from functools import cache

import qdrant_client
import torch
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain_community.retrievers import QdrantSparseVectorRetriever
from langchain_community.vectorstores import Qdrant
from langchain_openai.embeddings import OpenAIEmbeddings
from transformers import AutoModelForMaskedLM, AutoTokenizer


class DenseRetrieverClient:
    """Inititalize the dense retriever using OpenAI text embeddings and Qdrant vector database.

    Attributes:
        embeddings_model (str): The embeddings model to use. Right now only OpenAI text embeddings.
        collection_name (str): Qdrant collection name.
        client (QdrantClient): Qdrant client.
        qdrant_collection (Qdrant): Qdrant collection.
    """

    def __init__(self, embeddings_model: str = "text-embedding-ada-002", collection_name: str = "practitioners_db"):
        self.validate_environment_variables()
        self.embeddings_model = embeddings_model
        self.collection_name = collection_name
        self.client = qdrant_client.QdrantClient(
            url=os.getenv("QDRANT_URL"),
            api_key=os.getenv("QDRANT_API_KEY"),
        )
        self.qdrant_collection = self.load_qdrant_collection()

    def validate_environment_variables(self):
        """ Check if the Qdrant environment variables are set."""
        required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
        for var in required_vars:
            if not os.getenv(var):
                raise EnvironmentError(f"Missing environment variable: {var}")

    def set_qdrant_collection(self, embeddings):
        """Prepare the Qdrant collection for the embeddings model."""
        return Qdrant(client=self.client,
                      collection_name=self.collection_name,
                      embeddings=embeddings)

    @cache
    def load_qdrant_collection(self):
        """Load Qdrant collection for a given embeddings model."""
        # TODO: Test new OpenAI text embeddings models
        openai_text_embeddings = ["text-embedding-ada-002"]
        if self.embeddings_model in openai_text_embeddings:
            self.qdrant_collection = self.set_qdrant_collection(
                OpenAIEmbeddings(model=self.embeddings_model))
        else:
            raise ValueError(
                f"Invalid embeddings model: {self.embeddings_model}. Valid options are {', '.join(openai_text_embeddings)}.")

        return self.qdrant_collection

    def get_dense_retriever(self, search_type: str = "similarity", k: int = 4):
        """Set up retrievers (Qdrant vectorstore as retriever).

        Args:
            search_type (str, optional): similarity or mmr. Defaults to "similarity".
            k (int, optional): Number of documents retrieved. Defaults to 4.

        Returns:
            Retriever: Vectorstore as a retriever
        """
        dense_retriever = self.qdrant_collection.as_retriever(search_type=search_type,
                                                              search_kwargs={
                                                                  "k": k}
                                                              )
        return dense_retriever


class SparseRetrieverClient:
    """Inititalize the sparse retriever using the SPLADE neural retrieval model and Qdrant vector database.

    Attributes:
        collection_name (str): Qdrant collection name.
        vector_name (str): Qdrant vector name.
        splade_model_id (str): The SPLADE neural retrieval model id.
        k (int): Number of documents retrieved.
        client (QdrantClient): Qdrant client.
    """

    def __init__(self, collection_name: str, vector_name: str, splade_model_id: str = "naver/splade-cocondenser-ensembledistil", k: int = 15):
        self.validate_environment_variables()
        self.client = qdrant_client.QdrantClient(url=os.getenv(
            "QDRANT_URL"), api_key=os.getenv("QDRANT_API_KEY"))
        self.model_id = splade_model_id
        self.collection_name = collection_name
        self.vector_name = vector_name
        self.k = k

    def validate_environment_variables(self):
        required_vars = ["QDRANT_API_KEY", "QDRANT_URL"]
        for var in required_vars:
            if not os.getenv(var):
                raise EnvironmentError(f"Missing environment variable: {var}")

    @cache
    def set_tokenizer_config(self):
        """Initialize the tokenizer and the SPLADE neural retrieval model.
        See to https://huggingface.co./naver/splade-cocondenser-ensembledistil for more details.
        """
        tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        model = AutoModelForMaskedLM.from_pretrained(self.model_id)
        return tokenizer, model

    def sparse_encoder(self, text: str) -> tuple[list[int], list[float]]:
        """This function encodes the input text into a sparse vector. The encoder is required for the QdrantSparseVectorRetriever.
        Adapted from the Qdrant documentation: Computing the Sparse Vector code.

        Args:
            text (str): Text to encode

        Returns:
            tuple[list[int], list[float]]: Indices and values of the sparse vector
        """
        tokenizer, model = self.set_tokenizer_config()
        tokens = tokenizer(text, return_tensors="pt",
                           max_length=512, padding="max_length", truncation=True)
        output = model(**tokens)
        logits, attention_mask = output.logits, tokens.attention_mask
        relu_log = torch.log(1 + torch.relu(logits))
        weighted_log = relu_log * attention_mask.unsqueeze(-1)
        max_val, _ = torch.max(weighted_log, dim=1)
        vec = max_val.squeeze()
        indices = vec.nonzero().numpy().flatten()
        values = vec.detach().numpy()[indices]
        return indices.tolist(), values.tolist()

    def get_sparse_retriever(self):

        sparse_retriever = QdrantSparseVectorRetriever(
            client=self.client,
            collection_name=self.collection_name,
            sparse_vector_name=self.vector_name,
            sparse_encoder=self.sparse_encoder,
            k=self.k,
        )

        return sparse_retriever


def compression_retriever_setup(base_retriever, embeddings_model: str = "text-embedding-ada-002", similarity_threshold: float = 0.76) -> ContextualCompressionRetriever:
    """
    Creates a ContextualCompressionRetriever with a base retriever and a similarity threshold.

    The ContextualCompressionRetriever uses an EmbeddingsFilter with OpenAIEmbeddings to filter out documents 
    with a similarity score below the given threshold.

    Args:
        base_retriever: Retriever to be filtered.
        similarity_threshold (float, optional): The similarity threshold for the EmbeddingsFilter. 
            Documents with a similarity score below this threshold will be filtered out. Defaults to 0.76 (Obtained by experimenting with text-embeddings-ada-002).
            ** Be careful with this parameter, as it can have a big impact on the results and highly depends on the embeddings model used.

    Returns:
        ContextualCompressionRetriever: The created ContextualCompressionRetriever.
    """

    # Set up compression retriever (filter out documents with low similarity)
    relevant_filter = EmbeddingsFilter(embeddings=OpenAIEmbeddings(model=embeddings_model),
                                       similarity_threshold=similarity_threshold)

    compression_retriever = ContextualCompressionRetriever(
        base_compressor=relevant_filter, base_retriever=base_retriever
    )

    return compression_retriever