File size: 5,959 Bytes
3403534
 
 
61c5e3c
 
 
3403534
 
 
d75db53
61c5e3c
 
3403534
61c5e3c
3403534
31652af
3bf676f
3403534
 
 
 
 
 
a4e6fae
3403534
a4e6fae
3403534
 
 
 
 
 
 
 
1111290
3403534
 
 
 
 
a45b195
d09b02f
3403534
 
31652af
3403534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12a4ea
31652af
3403534
 
 
31652af
d7a2e82
3403534
 
97f86ab
3403534
 
 
 
 
 
 
 
 
 
31652af
3403534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75db53
 
 
 
 
 
 
3403534
a4e6fae
3403534
 
31652af
3403534
 
 
 
 
 
 
 
d75db53
3403534
 
61c5e3c
 
 
259fc63
 
c0d0a66
61c5e3c
 
 
 
 
d75db53
61c5e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75db53
61c5e3c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import openai
import streamlit as st
from langchain_core.messages import AIMessage, ChatMessage, HumanMessage
from langchain_core.tracers.context import collect_runs
from langsmith import Client
from streamlit_feedback import streamlit_feedback

from rag_chain.chain import get_rag_chain

# Langsmith client for the feedback system
client = Client()

# Streamlit page configuration
st.set_page_config(page_title="Tall Tree Health",
                   page_icon="πŸ’¬",
                   layout="centered",
                   initial_sidebar_state="expanded")

# Streamlit CSS configuration

with open("styles/styles.css") as css:
    st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)

# Error message template
base_error_message = (
    "Something went wrong while processing your request. "
    "Please refresh the page or try again later.\n\n"
    "If the error persists, please contact us at "
    "[Tall Tree Health](https://www.talltreehealth.ca/contact-us)."
)

# Get chain and memory


@st.cache_resource(ttl="5d", show_spinner=False)
def get_chain_and_memory():
    try:
        # gpt-4 points to gpt-4-0613
        # gpt-4-turbo-preview points to gpt-4-0125-preview
        # Fine-tuned: ft:gpt-3.5-turbo-1106:tall-tree::8mAkOSED
        # gpt-4-1106-preview
        return get_rag_chain(model_name="gpt-4-turbo", temperature=0.2)

    except Exception as e:
        st.warning(base_error_message, icon="πŸ™")
        st.stop()


chain, memory = get_chain_and_memory()

# Set up session state and clean memory (important to clean the memory at the end of each session)
if "history" not in st.session_state:
    st.session_state["history"] = []
    memory.clear()

if "messages" not in st.session_state:
    st.session_state["messages"] = []

# Select locations element into a container
with st.container(border=False):
    # Set the welcome message
    st.markdown(
        "\n\nHello there! πŸ‘‹ Need help finding the right service or practitioner? Let our AI-powered assistant give you a hand.\n\n"
        "To get started, please select your preferred location and share details about your symptoms or needs. "
    )
    location = st.radio(
        "**Our Locations**:",
        ["Cordova Bay - Victoria", "James Bay - Victoria",
            "Commercial Drive - Vancouver"],
        index=None, horizontal=False,
    )
    st.write("\n")

# Get user input only if a location is selected
prompt = ""
if location:
    user_input = st.chat_input("Enter your message...")
    if user_input:
        st.session_state["messages"].append(
            ChatMessage(role="user", content=user_input))
        prompt = f"{user_input}\nLocation: {location}"


# Display previous messages

user_avatar = "images/user.png"
ai_avatar = "images/tall-tree-logo.png"
for msg in st.session_state["messages"]:
    avatar = user_avatar if msg.role == 'user' else ai_avatar
    with st.chat_message(msg.role, avatar=avatar):
        st.markdown(msg.content)

# Chat interface
if prompt:

    # Add all previous messages to memory
    for human, ai in st.session_state["history"]:
        memory.chat_memory.add_user_message(HumanMessage(content=human))
        memory.chat_memory.add_ai_message(AIMessage(content=ai))

    # render the assistant's response
    with st.chat_message("assistant", avatar=ai_avatar):
        message_placeholder = st.empty()

        try:
            partial_message = ""
            # Collect runs for feedback using Langsmith
            with st.spinner(" "), collect_runs() as cb:
                for chunk in chain.stream({"message": prompt}):
                    partial_message += chunk
                    message_placeholder.markdown(partial_message + "|")
                st.session_state.run_id = cb.traced_runs[0].id
            message_placeholder.markdown(partial_message)
        except openai.BadRequestError:
            st.warning(base_error_message, icon="πŸ™")
            st.stop()
        except Exception as e:
            st.warning(base_error_message, icon="πŸ™")
            st.stop()

        # Add the full response to the history
        st.session_state["history"].append((prompt, partial_message))

        # Add AI message to memory after the response is generated
        memory.chat_memory.add_ai_message(AIMessage(content=partial_message))

        # Add the full response to the message history
        st.session_state["messages"].append(ChatMessage(
            role="assistant", content=partial_message))


# Feedback system using streamlit feedback and Langsmith

# Get the feedback option
feedback_option = "thumbs"

if st.session_state.get("run_id"):
    run_id = st.session_state.run_id
    feedback = streamlit_feedback(
        feedback_type=feedback_option,
        optional_text_label="[Optional] Please provide an explanation",
        key=f"feedback_{run_id}",
    )
    score_mappings = {
        "thumbs": {"πŸ‘": 1, "πŸ‘Ž": 0},
        "faces": {"πŸ˜€": 1, "πŸ™‚": 0.75, "😐": 0.5, "πŸ™": 0.25, "😞": 0},
    }

    # Get the score mapping based on the selected feedback option
    scores = score_mappings[feedback_option]

    if feedback:
        # Get the score from the selected feedback option's score mapping
        score = scores.get(feedback["score"])

        if score is not None:
            # Formulate feedback type string incorporating the feedback option
            # and score value
            feedback_type_str = f"{feedback_option} {feedback['score']}"

            # Record the feedback with the formulated feedback type string
            feedback_record = client.create_feedback(
                run_id,
                feedback_type_str,
                score=score,
                comment=feedback.get("text"),
            )
            st.session_state.feedback = {
                "feedback_id": str(feedback_record.id),
                "score": score,
            }
        else:
            st.warning("Invalid feedback score.")