from datasets import load_dataset, Dataset import os import json from datasets import load_dataset from datasets.utils.logging import disable_progress_bar # type: ignore from ui_constants import column_names, all_task_types import random disable_progress_bar() import math from sotopia_space.constants import MODEL_INFO id_to_data = None model_len_info = None def make_clickable_model(model_name): global MODEL_INFO if model_name in MODEL_INFO: if MODEL_INFO[model_name]["hf_model_id"].startswith("http"): link = MODEL_INFO[model_name]["hf_model_id"] return f'🔒 {MODEL_INFO[model_name]["pretty_name"]}' else: link = f"https://huggingface.co./{MODEL_INFO[model_name]['hf_model_id']}" return f'🔥 {MODEL_INFO[model_name]["pretty_name"]}' else: return model_name def styled_error(error): return f"

{error}

" def styled_warning(warn): return f"

{warn}

" def styled_message(message): return f"

{message}

" def estimated_win_rate(elo_a, elo_b, LP=0): """ Calculate the estimated win rate for player A against player B using their Elo ratings. :param elo_a: Elo rating of player A :param elo_b: Elo rating of player B :return: Estimated win rate for player A """ exponent = (elo_b - elo_a)*(10**LP) / 400 probability_a_wins = 1 / (1 + 10 ** exponent) return (1-probability_a_wins)*100 # Formats the columns def formatter(x): if type(x) is str: x = x else: x = round(x, 1) return x def add_winrates(current_df, LP=0): df = current_df.copy() elo_column = "Task-Avg Elo" # Correct way to filter the DataFrame and get the Elo rating for "gpt-4-0125-preview" model_a_elo = df[df["Model"].str.contains("gpt-4")][elo_column].iloc[0] # Correct way to filter the DataFrame and get the Elo rating for "gpt-3.5-turbo-0125" model_b_elo = df[df["Model"].str.contains("gpt-3.5")][elo_column].iloc[0] # Calculate the win rate of "gpt-4-0125-preview" against all models df['Win% vs GPT-4'] = df[elo_column].apply(lambda x: estimated_win_rate(model_a_elo, x, LP=LP)).apply(formatter) df['Win% vs GPT-3.5T'] = df[elo_column].apply(lambda x: estimated_win_rate(model_b_elo, x, LP=LP)).apply(formatter) # apply the formatter for the two new columns cols = list(df.columns) cols.remove("# battles"); cols.append("# battles") cols.remove("Length"); cols.append("Length") df = df[cols] return df def add_winrates_tasks(current_df, ref="gpt-4", LP=0): new_df = current_df.copy() for t in all_task_types: column = column_names[t] model_a_elo = current_df[current_df["Model"].str.contains(ref)][column].iloc[0] new_df[column] = current_df[column].apply(lambda x: estimated_win_rate(model_a_elo, x, LP=LP)).apply(formatter) return new_df def post_processing(df, model_len_info): if model_len_info: df["Length"] = df["model name "].apply(lambda x: model_len_info[x]["avg_len"]) for col in df.columns: if col == "model name ": df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) else: df[col] = df[col].apply(formatter) # For numerical values df.rename(columns=column_names, inplace=True) df.sort_values(by="Task-Avg Elo", inplace=True, ascending=False) # put the "Overall Elo" and "Task-Avg Elo" column to the front # add the length info df = df[["Model", "Task-Avg Elo"] + [col for col in df.columns if col not in ["Model", "Task-Avg Elo"]]] return df def apply_length_penalty(original_df, ablation_df, length_penalty=0.2, mode='v1', LP_original_dfs=None): """ Temporarily disable the length penalty feature if mode == 'v2' and LP_original_dfs is not None: L = f"{length_penalty:.1f}" return LP_original_dfs[L] original_df = original_df.copy() ablation_df = ablation_df.copy() # replace all values in original_df with the values as z = x - y * length_penalty where y is from ablation_df at the same row and column # except for the "Model" column and the "# battles" column # do not assume the order of the rows are the same in both dataframes for i, row in original_df.iterrows(): for col in original_df.columns: if col == "Model" or col == "# battles" or col == "Length": continue # assert that the model names are the same in both dataframes assert original_df.at[i, "Model"] == ablation_df[ablation_df["Model"] == row["Model"]]["Model"].values[0] original_df[col] = original_df[col].astype(float) if mode == "v1": original_df.at[i, col] = original_df.at[i, col] - ablation_df[ablation_df["Model"] == row["Model"]][col].values[0] * length_penalty elif mode == "v1.1": diff = original_df.at[i, col] - ablation_df[ablation_df["Model"] == row["Model"]][col].values[0] original_df.at[i, col] = original_df.at[i, col] * (1-length_penalty) + diff*length_penalty # post_processing original_df = post_processing(original_df, model_len_info=None) """ return original_df def load_benchdata(): print("Loading sotopia data...") bench_data = load_dataset("cmu-lti/sotopia", split="test") return bench_data def load_benchdata_dict(): print("Loading sotopia data....") bench_data = load_dataset("cmu-lti/sotopia", data_files="sotopia_episodes_v1_hf.jsonl")['train'] id_to_data = {} for item in bench_data: id_to_data[item["session_id"]] = item return id_to_data def load_eval_results(): print("Loading sotopia Evaluation data...") eval_results = load_dataset("WildEval/sotopia-Evaluation", "all", split="train") return eval_results def load_infer_results(model_name): print(f"Loading sotopia Results for {model_name}...") infer_results = load_dataset("WildEval/sotopia-Results", model_name, split="train") return infer_results def sample_an_eval_result(eval_results, model_list=[], tag_list=[]): global id_to_data eval_results = list(eval_results) random.shuffle(eval_results) for eval_item in eval_results: # print(json.dumps(eval_item, indent=2)) # print(f"## Session ID: {eval_item['session_id']}") # eval_item["eval_id"] assignment = eval_item['assignment'] model_1, model_2 = eval_item['model_1'], eval_item['model_2'] model_A = model_1 if assignment['A'] == model_1 else model_2 model_B = model_2 if assignment['B'] == model_2 else model_1 if len(model_list) >= 2: if model_A not in model_list or model_B not in model_list: continue elif len(model_list) == 1: if model_A != model_list[0] and model_B != model_list[0]: continue else: pass if tag_list: if set(tag_list).isdisjoint(set(eval_item['tags'])): continue winner = eval_item['winner'] # print(f"## Model A: {model_A} | Model B: {model_B} | Winner: {winner}") task_type = eval_item['tags'][0] # primary task type chat_history = eval_item['history'] last_query = eval_item['last_query'] # print(f"## Task Type: {task_type}") # print(f"## Chat History: {chat_history}") # print(f"## Last Query --> USER: {last_query}") model_A_output = eval_item['model_1_output'] if model_1 == model_A else eval_item['model_2_output'] model_B_output = eval_item['model_2_output'] if model_2 == model_B else eval_item['model_1_output'] if len(model_A_output.strip()) == 0 or len(model_B_output.strip()) == 0: continue conversation_input = id_to_data[eval_item['session_id']]["conversation_input"] # print(f"\n\n\n## Model A ({model_A}) Output ##\n{model_A_output}") # print(f"\n\n\n## Model B ({model_B}) Output ##\n{model_B_output}") # print(f"\n\n\n## Winner ##\n{winner}") # print(f"\n\n\n## GPT-4 Judgement ##\n{eval_item['parsed_result']}") result_dict = { "session_id": eval_item['session_id'], "model_A": model_A, "model_B": model_B, "winner": winner, "intent": id_to_data[eval_item['session_id']]["intent"], "task_type": task_type, "all_tags": eval_item['tags'], "chat_history": chat_history, "last_query": last_query, "conversation_input": conversation_input, "model_A_output": model_A_output, "model_B_output": model_B_output, "reason": eval_item['parsed_result']["reason"], "choice": eval_item['parsed_result']["choice"], "checklist": id_to_data[eval_item['session_id']]["checklist"], } break return result_dict #id_to_data = load_benchdata_dict()