lyndonzheng commited on
Commit
4bba5c3
Β·
1 Parent(s): 0f8b4e3

delet pre-installed unidepth

Browse files
flash3d/networks/unidepth_extension.py CHANGED
@@ -4,7 +4,6 @@ import torch.nn.functional as F
4
  from einops import rearrange
5
 
6
  from .unidepth import UniDepthDepth
7
- from unidepth.models import UniDepthV1
8
  from .resnet_encoder import ResnetEncoder
9
  from .gaussian_decoder import GaussianDecoder
10
  from .depth_decoder import DepthDecoder
@@ -20,7 +19,6 @@ class UniDepthExtended(nn.Module):
20
  self.cfg = cfg
21
 
22
  self.unidepth = UniDepthDepth(cfg)
23
- # self.unidepth = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
24
 
25
  self.parameters_to_train = []
26
  if self.cfg.model.splat_branch == "resnet":
@@ -129,17 +127,7 @@ class UniDepthExtended(nn.Module):
129
  depth_outs["depth"] = inputs[('unidepth', 0, 0)]
130
  else:
131
  with torch.no_grad():
132
- # if self.training and self.cfg.dataset.pad_border_aug > 0:
133
- # pad = self.cfg.dataset.pad_border_aug
134
- # input = inputs["color_aug", 0, 0][:,:,pad:-pad, pad:-pad]
135
- # intrincs = inputs[("K_tgt", 0)]
136
- # else:
137
- # input = inputs["color_aug", 0, 0]
138
- # intrincs = inputs[("K_src", 0)]
139
  _, depth_outs = self.unidepth(inputs)
140
- # depth_outs = self.unidepth.infer(input, intrincs)
141
- # if self.training and self.cfg.dataset.pad_border_aug > 0:
142
- # depth_outs["depth"] = F.pad(depth_outs["depth"], (pad,pad,pad,pad), mode="replicate")
143
 
144
  outputs_gauss = {}
145
 
 
4
  from einops import rearrange
5
 
6
  from .unidepth import UniDepthDepth
 
7
  from .resnet_encoder import ResnetEncoder
8
  from .gaussian_decoder import GaussianDecoder
9
  from .depth_decoder import DepthDecoder
 
19
  self.cfg = cfg
20
 
21
  self.unidepth = UniDepthDepth(cfg)
 
22
 
23
  self.parameters_to_train = []
24
  if self.cfg.model.splat_branch == "resnet":
 
127
  depth_outs["depth"] = inputs[('unidepth', 0, 0)]
128
  else:
129
  with torch.no_grad():
 
 
 
 
 
 
 
130
  _, depth_outs = self.unidepth(inputs)
 
 
 
131
 
132
  outputs_gauss = {}
133