syubraj's picture
Update app.py
04618d4 verified
import gradio as gr
from transformers import AutoTokenizer, MT5ForConditionalGeneration
# Load tokenizer and model
checkpoint = "syubraj/romaneng2nep_v2"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = MT5ForConditionalGeneration.from_pretrained(checkpoint)
# Set max sequence length
max_seq_len = 20
# Define the translation function
def translate(text):
# Tokenize the input text with a max length of 20
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len)
# Generate translation
translated = model.generate(**inputs)
# Decode the translated tokens back to text
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
# Gradio interface
iface = gr.Interface(
fn=translate, # function to use for inference
inputs="text", # input type
outputs="text", # output type
title="Romanized English to Nepali Transliterator",
description="Translate Romanized English text into Nepali.",
examples=[["ahile"],["prakriti"], ["mahasagar"], ["pradarshan"],["khutkela"], ["nandan"], ["khola"]]
)
# Launch the Gradio app
iface.launch()