import gradio as gr import torch torch.jit.script = lambda f: f import timm import time from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download from safetensors.torch import load_file from share_btn import community_icon_html, loading_icon_html, share_js from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler import lora import copy import json import gc import random from urllib.parse import quote import gdown import os import re import requests import diffusers from diffusers.utils import load_image from diffusers.models import ControlNetModel from diffusers import AutoencoderKL, DPMSolverMultistepScheduler import cv2 import torch import numpy as np from PIL import Image from insightface.app import FaceAnalysis from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps from controlnet_aux import ZoeDetector from compel import Compel, ReturnedEmbeddingsType import spaces from gradio_imageslider import ImageSlider #from gradio_imageslider import ImageSlider with open("sdxl_loras.json", "r") as file: data = json.load(file) sdxl_loras_raw = [ { "image": item["image"], "title": item["title"], "repo": item["repo"], "trigger_word": item["trigger_word"], "weights": item["weights"], "is_compatible": item["is_compatible"], "is_pivotal": item.get("is_pivotal", False), "text_embedding_weights": item.get("text_embedding_weights", None), "likes": item.get("likes", 0), "downloads": item.get("downloads", 0), "is_nc": item.get("is_nc", False), "new": item.get("new", False), } for item in data ] with open("defaults_data.json", "r") as file: lora_defaults = json.load(file) device = "cuda" state_dicts = {} for item in sdxl_loras_raw: saved_name = hf_hub_download(item["repo"], item["weights"]) if not saved_name.endswith('.safetensors'): state_dict = torch.load(saved_name) else: state_dict = load_file(saved_name) state_dicts[item["repo"]] = { "saved_name": saved_name, "state_dict": state_dict } sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] # download models hf_hub_download( repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="/data/checkpoints", ) hf_hub_download( repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="/data/checkpoints", ) hf_hub_download( repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints" ) hf_hub_download( repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="/data/checkpoints", ) # download antelopev2 #if not os.path.exists("/data/antelopev2.zip"): # gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True) # os.system("unzip /data/antelopev2.zip -d /data/models/") antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2") print(antelope_download) app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) # prepare models under ./checkpoints face_adapter = f'/data/checkpoints/ip-adapter.bin' controlnet_path = f'/data/checkpoints/ControlNetModel' # load IdentityNet st = time.time() identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16) et = time.time() elapsed_time = et - st print('Loading ControlNet took: ', elapsed_time, 'seconds') st = time.time() vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) et = time.time() elapsed_time = et - st print('Loading VAE took: ', elapsed_time, 'seconds') st = time.time() pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", vae=vae, controlnet=[identitynet, zoedepthnet], torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) pipe.load_ip_adapter_instantid(face_adapter) pipe.set_ip_adapter_scale(0.8) et = time.time() elapsed_time = et - st print('Loading pipeline took: ', elapsed_time, 'seconds') st = time.time() compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) et = time.time() elapsed_time = et - st print('Loading Compel took: ', elapsed_time, 'seconds') st = time.time() zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") et = time.time() elapsed_time = et - st print('Loading Zoe took: ', elapsed_time, 'seconds') zoe.to(device) pipe.to(device) last_lora = "" last_fused = False js = ''' var button = document.getElementById('button'); // Add a click event listener to the button button.addEventListener('click', function() { element.classList.add('selected'); }); ''' lora_archive = "/data" def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False): lora_repo = sdxl_loras[selected_state.index]["repo"] new_placeholder = "Type a prompt to use your selected LoRA" weight_name = sdxl_loras[selected_state.index]["weights"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co./{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" for lora_list in lora_defaults: if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: face_strength = lora_list.get("face_strength", 0.85) image_strength = lora_list.get("image_strength", 0.15) weight = lora_list.get("weight", 0.9) depth_control_scale = lora_list.get("depth_control_scale", 0.8) negative = lora_list.get("negative", "") if(is_new): if(selected_state.index == 0): selected_state.index = -9999 else: selected_state.index *= -1 return ( updated_text, gr.update(placeholder=new_placeholder), face_strength, image_strength, weight, depth_control_scale, negative, selected_state ) def center_crop_image_as_square(img): square_size = min(img.size) left = (img.width - square_size) / 2 top = (img.height - square_size) / 2 right = (img.width + square_size) / 2 bottom = (img.height + square_size) / 2 img_cropped = img.crop((left, top, right, bottom)) return img_cropped def check_selected(selected_state, custom_lora): if not selected_state and not custom_lora: raise gr.Error("You must select a style") def merge_incompatible_lora(full_path_lora, lora_scale): for weights_file in [full_path_lora]: if ";" in weights_file: weights_file, multiplier = weights_file.split(";") multiplier = float(multiplier) else: multiplier = lora_scale lora_model, weights_sd = lora.create_network_from_weights( multiplier, full_path_lora, pipe.vae, pipe.text_encoder, pipe.unet, for_inference=True, ) lora_model.merge_to( pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" ) del weights_sd del lora_model @spaces.GPU def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st): print(loaded_state_dict) et = time.time() elapsed_time = et - st print('Getting into the decorated function took: ', elapsed_time, 'seconds') global last_fused, last_lora print("Last LoRA: ", last_lora) print("Current LoRA: ", repo_name) print("Last fused: ", last_fused) #prepare face zoe st = time.time() with torch.no_grad(): image_zoe = zoe(face_image) width, height = face_kps.size images = [face_kps, image_zoe.resize((height, width))] et = time.time() elapsed_time = et - st print('Zoe Depth calculations took: ', elapsed_time, 'seconds') if last_lora != repo_name: if(last_fused): st = time.time() pipe.unfuse_lora() pipe.unload_lora_weights() pipe.unload_textual_inversion() et = time.time() elapsed_time = et - st print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds') st = time.time() pipe.load_lora_weights(loaded_state_dict) pipe.fuse_lora(lora_scale) et = time.time() elapsed_time = et - st print('Fuse and load LoRA took: ', elapsed_time, 'seconds') last_fused = True is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"] if(is_pivotal): #Add the textual inversion embeddings from pivotal tuning models text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"] embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") state_dict_embedding = load_file(embedding_path) pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["", ""], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["", ""], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) print("Processing prompt...") st = time.time() conditioning, pooled = compel(prompt) if(negative): negative_conditioning, negative_pooled = compel(negative) else: negative_conditioning, negative_pooled = None, None et = time.time() elapsed_time = et - st print('Prompt processing took: ', elapsed_time, 'seconds') print("Processing image...") st = time.time() image = pipe( prompt_embeds=conditioning, pooled_prompt_embeds=pooled, negative_prompt_embeds=negative_conditioning, negative_pooled_prompt_embeds=negative_pooled, width=1024, height=1024, image_embeds=face_emb, image=face_image, strength=1-image_strength, control_image=images, num_inference_steps=20, guidance_scale = guidance_scale, controlnet_conditioning_scale=[face_strength, depth_control_scale], ).images[0] et = time.time() elapsed_time = et - st print('Image processing took: ', elapsed_time, 'seconds') last_lora = repo_name return image def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)): print("Custom LoRA: ", custom_lora) custom_lora_path = custom_lora[0] if custom_lora else None selected_state_index = selected_state.index if selected_state else -1 st = time.time() face_image = center_crop_image_as_square(face_image) try: face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face face_emb = face_info['embedding'] face_kps = draw_kps(face_image, face_info['kps']) except: raise gr.Error("No face found in your image. Only face images work here. Try again") et = time.time() elapsed_time = et - st print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds') st = time.time() if(custom_lora_path): prompt = f"{prompt} {custom_lora[1]}" else: for lora_list in lora_defaults: if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]: prompt_full = lora_list.get("prompt", None) if(prompt_full): prompt = prompt_full.replace("", prompt) print("Prompt:", prompt) if(prompt == ""): prompt = "a person" #print("Selected State: ", selected_state_index) #print(sdxl_loras[selected_state_index]["repo"]) if negative == "": negative = None print("Custom Loaded LoRA: ", custom_lora_path) if not selected_state and not custom_lora_path: raise gr.Error("You must select a style") elif custom_lora_path: repo_name = custom_lora_path full_path_lora = custom_lora_path else: repo_name = sdxl_loras[selected_state_index]["repo"] weight_name = sdxl_loras[selected_state_index]["weights"] full_path_lora = state_dicts[repo_name]["saved_name"] print("Full path LoRA ", full_path_lora) #loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"]) cross_attention_kwargs = None et = time.time() elapsed_time = et - st print('Small content processing took: ', elapsed_time, 'seconds') st = time.time() image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, st) return (face_image, image), gr.update(visible=True) def shuffle_gallery(sdxl_loras): random.shuffle(sdxl_loras) return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras def classify_gallery(sdxl_loras): sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True) return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery def swap_gallery(order, sdxl_loras): if(order == "random"): return shuffle_gallery(sdxl_loras) else: return classify_gallery(sdxl_loras) def deselect(): return gr.Gallery(selected_index=None) def get_huggingface_safetensors(link): split_link = link.split("/") if(len(split_link) == 2): model_card = ModelCard.load(link) image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co./{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if(file.endswith(".safetensors")): safetensors_name = file.replace("/", "_") if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}") if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): image_elements = file.split("/") image_url = f"https://huggingface.co./{link}/resolve/main/{image_elements[-1]}" except: gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url def get_civitai_safetensors(link): link_split = link.split("civitai.com/") pattern = re.compile(r'models\/(\d+)') regex_match = pattern.search(link_split[1]) if(regex_match): civitai_model_id = regex_match.group(1) else: gr.Warning("No CivitAI model id found in your URL") raise Exception("No CivitAI model id found in your URL") model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}" x = requests.get(model_request_url) if(x.status_code != 200): raise Exception("Invalid CivitAI URL") model_data = x.json() if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 20): gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") elif(model_data["type"] != "LORA"): gr.Warning("The model isn't tagged at CivitAI as a LoRA") raise Exception("The model isn't tagged at CivitAI as a LoRA") model_link_download = None image_url = None trigger_word = "" for model in model_data["modelVersions"]: if(model["baseModel"] == "SDXL 1.0"): model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}" safetensors_name = model["files"][0]["name"] if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): safetensors_file_request = requests.get(model_link_download) if(safetensors_file_request.status_code != 200): raise Exception("Invalid CivitAI download link") with open(f"{lora_archive}/{safetensors_name}", 'wb') as file: file.write(safetensors_file_request.content) trigger_word = model.get("trainedWords", [""])[0] for image in model["images"]: if(image["nsfwLevel"] == 1): image_url = image["url"] break break if(not model_link_download): gr.Warning("We couldn't find a SDXL LoRA on the model you've sent") raise Exception("We couldn't find a SDXL LoRA on the model you've sent") return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url def check_custom_model(link): if(link.startswith("https://")): if(link.startswith("https://huggingface.co.") or link.startswith("https://www.huggingface.co")): link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")): return get_civitai_safetensors(link) else: return get_huggingface_safetensors(link) def show_loading_widget(): return gr.update(visible=True) def load_custom_lora(link): if(link): try: title, path, trigger_word, image = check_custom_model(link) card = f'''
Loaded custom LoRA:

{title}

{"Using: "+trigger_word+" as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}
''' return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}" except Exception as e: gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content") return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=False), "", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True) def remove_custom_lora(): return "", gr.update(visible=False), gr.update(visible=False), None with gr.Blocks(css="custom.css") as demo: gr_sdxl_loras = gr.State(value=sdxl_loras_raw) title = gr.HTML( """

Face to All
🧨 diffusers InstantID + ControlNet
inspired by fofr's face-to-many

""", elem_id="title", ) selected_state = gr.State() custom_loaded_lora = gr.State() with gr.Row(elem_id="main_app"): with gr.Column(scale=4, elem_id="box_column"): with gr.Group(elem_id="gallery_box"): photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300) selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) #order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") #new_gallery = gr.Gallery( # label="New LoRAs", # elem_id="gallery_new", # columns=3, # value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False) gallery = gr.Gallery( #value=[(item["image"], item["title"]) for item in sdxl_loras], label="Pick a style from the gallery", allow_preview=False, columns=4, elem_id="gallery", show_share_button=False, height=550 ) custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...") custom_model_card = gr.HTML(visible=False) custom_model_button = gr.Button("Remove custom LoRA", visible=False) with gr.Column(scale=5): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt") button = gr.Button("Run", elem_id="run_button") result = ImageSlider( interactive=False, label="Generated Image", elem_id="result-image", position=0.1 ) with gr.Group(elem_id="share-btn-container", visible=False) as share_group: community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") with gr.Accordion("Advanced options", open=False): negative = gr.Textbox(label="Negative Prompt") weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight") face_strength = gr.Slider(0, 2, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models") image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo") guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale") depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght") prompt_title = gr.Markdown( value="### Click on a LoRA in the gallery to select it", visible=True, elem_id="selected_lora", ) #order_gallery.change( # fn=swap_gallery, # inputs=[order_gallery, gr_sdxl_loras], # outputs=[gallery, gr_sdxl_loras], # queue=False #) custom_model.input( fn=load_custom_lora, inputs=[custom_model], outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title], queue=False ) custom_model_button.click( fn=remove_custom_lora, outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora] ) gallery.select( fn=update_selection, inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative], outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state], queue=False, show_progress=False ) #new_gallery.select( # fn=update_selection, # inputs=[gr_sdxl_loras_new, gr.State(True)], # outputs=[prompt_title, prompt, prompt, selected_state, gallery], # queue=False, # show_progress=False #) prompt.submit( fn=check_selected, inputs=[selected_state, custom_loaded_lora], queue=False, show_progress=False ).success( fn=run_lora, inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], outputs=[result, share_group], ) button.click( fn=check_selected, inputs=[selected_state, custom_loaded_lora], queue=False, show_progress=False ).success( fn=run_lora, inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], outputs=[result, share_group], ) share_button.click(None, [], [], js=share_js) demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js) demo.queue(max_size=20) demo.launch(share=True)