English Chinese

GIM: Learning Generalizable Image Matcher From Internet Videos

Overview Video

ICLR 2024 Spotlight Project Page arxiv HuggingFace Space Overview Video ![GitHub Repo stars](https://img.shields.io/github/stars/xuelunshen/gim?style=social) Intel Intel Intel
| |
方法
|
平均
AUC@5°
(%) ↑
| GL3 | BLE | ETI | ETO | KIT | WEA | SEA | NIG | MUL | SCE | ICL | GTA | | ---- | ------------------------------------------------------------ | --------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | | | 传统算法 | | | | | | | | | | | | | | | RootSIFT | 31.8 | 43.5 | 33.6 | 49.9 | 48.7 | 35.2 | 21.4 | 44.1 | 14.7 | 33.4 | 7.6 | 14.8 | 35.1 | | | | 稀疏匹配 | | | | | | | | | | | | | | | [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork) (in) | 21.6 | 19.2 | 16.0 | 38.2 | 37.7 | 22.0 | 20.8 | 40.8 | 13.7 | 21.4 | 0.8 | 9.6 | 18.8 | | | SuperGlue (out) | 31.2 | 29.7 | 24.2 | 52.3 | 59.3 | 28.0 | 28.4 | 48.0 | 20.9 | 33.4 | 4.5 | 16.6 | 29.3 | | | **GIM_SuperGlue**
(50h) | 34.3 | 43.2 | 34.2 | 58.7 | 61.0 | 29.0 | 28.3 | 48.4 | 18.8 | 34.8 | 2.8 | 15.4 | 36.5 | | | [LightGlue](https://github.com/cvg/LightGlue) | 31.7 | 28.9 | 23.9 | 51.6 | 56.3 | 32.1 | 29.5 | 48.9 | 22.2 | 37.4 | 3.0 | 16.2 | 30.4 | | ✅ | **GIM_LightGlue**
(100h) | **38.3** | **46.6** | **38.1** | **61.7** | **62.9** | **34.9** | **31.2** | **50.6** | **22.6** | **41.8** | **6.9** | **19.0** | **43.4** | | | | 半密集匹配 | | | | | | | | | | | | | | | [LoFTR](https://github.com/zju3dv/LoFTR) (in) | 10.7 | 5.6 | 5.1 | 11.8 | 7.5 | 17.2 | 6.4 | 9.7 | 3.5 | 22.4 | 1.3 | 14.9 | 23.4 | | | LoFTR (out) | 33.1 | 29.3 | 22.5 | 51.1 | 60.1 | **36.1** | **29.7** | **48.6** | **19.4** | 37.0 | **13.1** | 20.5 | 30.3 | | | **GIM_LoFTR**
(50h) | **39.1** | **50.6** | **43.9** | **62.6** | **61.6** | 35.9 | 26.8 | 47.5 | 17.6 | **41.4** | 10.2 | **25.6** | **45.0** | | 🟩 | **GIM_LoFTR**
(100h) | ToDO | | | | | | | | | | | | | | | | 密集匹配 | | | | | | | | | | | | | | | [DKM](https://github.com/Parskatt/DKM) (in) | 46.2 | 44.4 | 37.0 | 65.7 | 73.3 | 40.2 | 32.8 | 51.0 | 23.1 | 54.7 | 33.0 | **43.6** | 55.7 | | | DKM (out) | 45.8 | 45.7 | 37.0 | 66.8 | 75.8 | 41.7 | 33.5 | 51.4 | 22.9 | 56.3 | 27.3 | 37.8 | 52.9 | | | **GIM_DKM**
(50h) | 49.4 | 58.3 | 47.8 | 72.7 | 74.5 | 42.1 | **34.6** | 52.0 | **25.1** | 53.7 | 32.3 | 38.8 | 60.6 | | ✅ | **GIM_DKM**
(100h) | **51.2** | **63.3** | **53.0** | **73.9** | 76.7 | **43.4** | **34.6** | **52.5** | 24.5 | 56.6 | 32.2 | 42.5 | **61.6** | | | [RoMa](https://github.com/Parskatt/RoMa) (in) | 46.7 | 46.0 | 39.3 | 68.8 | 77.2 | 36.5 | 31.1 | 50.4 | 20.8 | 57.8 | **33.8** | 41.7 | 57.6 | | | RoMa (out) | 48.8 | 48.3 | 40.6 | 73.6 | **79.8** | 39.9 | 34.4 | 51.4 | 24.2 | **59.9** | 33.7 | 41.3 | 59.2 | | 🟩 | **GIM_RoMa** | ToDO | | | | | | | | | | | | | > 该表格的数据来自论文提出的 **ZEB**: Zero-shot Evaluation Benchmark for Image Matching, 该 benchmark 由 12 个涵盖各种场景、天气和相机模型的公开数据集组成,对应了表格中从 GL3 开始的 12 列测试序列。我们会尽快公开 **ZEB**。 ## ✅ 待办清单 - [ ] Inference code - [ ] gim_roma - [x] gim_dkm - [ ] gim_loftr - [x] gim_lightglue - [ ] Training code > 剩余的开源工作我们还在抓紧进行,感谢大家的关注。 ## 🤗 在线体验 去 [Huggingface](https://huggingface.co./spaces/xuelunshen/gim-online) 在线快速体验我们模型的效果 ## ⚙️ 运行环境 我在新服务器上是使用下面的命令进行运行环境的安装。 ```bash conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge pip install albumentations==1.0.1 --no-binary=imgaug,albumentations pip install pytorch-lightning==1.5.10 pip install opencv-python==4.5.3.56 pip install imagesize==1.2.0 pip install kornia==0.6.10 pip install einops==0.3.0 pip install loguru==0.5.3 pip install joblib==1.0.1 pip install yacs==0.1.8 pip install h5py==3.1.0 ``` ## 🔨 使用 克隆本仓库 ```bash git clone https://github.com/xuelunshen/gim.git cd gim ``` 从 [Google Drive](https://drive.google.com/file/d/1gk97V4IROnR1Nprq10W9NCFUv2mxXR_-/view?usp=sharing) 下载 `gim_dkm` 的模型参数 将模型参数放在文件夹 `weights` 里面 运行下面的命令 ```bash python demo.py --model gim_dkm ``` or ```bash python demo.py --model gim_lightglue ``` 代码会将 `assets/demo` 中的 `a1.png` 和 `a2.png` 进行匹配
输出 `a1_a2_match.png` 和 `a1_a2_warp.png`
点击这里查看 a1.pnga2.png.

点击这里查看 a1_a2_match.png.

a1_a2_match.png 是两张图像匹配的可视化

点击这里查看 a1_a2_warp.png.

a1_a2_warp.png 是将图像a2用 homography 投影到图像a1的效果

还有更多图像在文件夹 `assets/demo` 中, 大家都可以尝试拿来匹配看看.
点击这里查看更多图像

## 📌 引用 如果我们的代码对你的研究有帮助, 请给我们的论文一个引用 ❤️ 并给 gim 的仓库点个小星星 ⭐️ 吧, 多谢啦~ ```bibtex @inproceedings{ xuelun2024gim, title={GIM: Learning Generalizable Image Matcher From Internet Videos}, author={Xuelun Shen and Zhipeng Cai and Wei Yin and Matthias Müller and Zijun Li and Kaixuan Wang and Xiaozhi Chen and Cheng Wang}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024} } ``` ## License This repository is under the MIT License. This content/model is provided here for research purposes only. Any use beyond this is your sole responsibility and subject to your securing the necessary rights for your purpose.