Spaces:
Sleeping
Sleeping
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from roma.utils.utils import tensor_to_pil | |
from roma import roma_indoor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if __name__ == "__main__": | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument("--im_A_path", default="assets/sacre_coeur_A.jpg", type=str) | |
parser.add_argument("--im_B_path", default="assets/sacre_coeur_B.jpg", type=str) | |
parser.add_argument( | |
"--save_path", default="demo/dkmv3_warp_sacre_coeur.jpg", type=str | |
) | |
args, _ = parser.parse_known_args() | |
im1_path = args.im_A_path | |
im2_path = args.im_B_path | |
save_path = args.save_path | |
# Create model | |
roma_model = roma_indoor(device=device) | |
H, W = roma_model.get_output_resolution() | |
im1 = Image.open(im1_path).resize((W, H)) | |
im2 = Image.open(im2_path).resize((W, H)) | |
# Match | |
warp, certainty = roma_model.match(im1_path, im2_path, device=device) | |
# Sampling not needed, but can be done with model.sample(warp, certainty) | |
x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1) | |
x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1) | |
im2_transfer_rgb = F.grid_sample( | |
x2[None], warp[:, :W, 2:][None], mode="bilinear", align_corners=False | |
)[0] | |
im1_transfer_rgb = F.grid_sample( | |
x1[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False | |
)[0] | |
warp_im = torch.cat((im2_transfer_rgb, im1_transfer_rgb), dim=2) | |
white_im = torch.ones((H, 2 * W), device=device) | |
vis_im = certainty * warp_im + (1 - certainty) * white_im | |
tensor_to_pil(vis_im, unnormalize=False).save(save_path) | |