File size: 8,891 Bytes
10f36ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
import os.path
from functools import lru_cache
from typing import Union, List

import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download, HfFileSystem

try:
    from typing import Literal
except (ModuleNotFoundError, ImportError):
    from typing_extensions import Literal

from imgutils.data import MultiImagesTyping, load_images, ImageTyping
from imgutils.utils import open_onnx_model

hf_fs = HfFileSystem()


def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)):
    mean, std = np.asarray(mean), np.asarray(std)
    return (data - mean[:, None, None]) / std[:, None, None]


def _preprocess_image(image: Image.Image, size: int = 384):
    image = image.resize((size, size), resample=Image.BILINEAR)
    # noinspection PyTypeChecker
    data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
    data = _normalize(data)

    return data


@lru_cache()
def _open_feat_model(model):
    return open_onnx_model(hf_hub_download(
        f'deepghs/ccip_onnx',
        f'{model}/model_feat.onnx',
    ))


@lru_cache()
def _open_metric_model(model):
    return open_onnx_model(hf_hub_download(
        f'deepghs/ccip_onnx',
        f'{model}/model_metrics.onnx',
    ))


@lru_cache()
def _open_metrics(model):
    with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/metrics.json'), 'r') as f:
        return json.load(f)


@lru_cache()
def _open_cluster_metrics(model):
    with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/cluster.json'), 'r') as f:
        return json.load(f)


_VALID_MODEL_NAMES = [
    os.path.basename(os.path.dirname(file)) for file in
    hf_fs.glob('deepghs/ccip_onnx/*/model.ckpt')
]
_DEFAULT_MODEL_NAMES = 'ccip-caformer-24-randaug-pruned'


def ccip_extract_feature(image: ImageTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
    """
    Extracts the feature vector of the character from the given anime image.

    :param image: The anime image containing a single character.
    :type image: ImageTyping

    :param size: The size of the input image to be used for feature extraction. (default: ``384``)
    :type size: int

    :param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
                  The available model names are: ``ccip-caformer-24-randaug-pruned``,
                  ``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
    :type model: str

    :return: The feature vector of the character.
    :rtype: numpy.ndarray

    Examples::
        >>> from imgutils.metrics import ccip_extract_feature
        >>>
        >>> feat = ccip_extract_feature('ccip/1.jpg')
        >>> feat.shape, feat.dtype
        ((768,), dtype('float32'))
    """
    return ccip_batch_extract_features([image], size, model)[0]


def ccip_batch_extract_features(images: MultiImagesTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
    """
    Extracts the feature vectors of multiple images using the specified model.

    :param images: The input images from which to extract the feature vectors.
    :type images: MultiImagesTyping

    :param size: The size of the input image to be used for feature extraction. (default: ``384``)
    :type size: int

    :param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
                  The available model names are: ``ccip-caformer-24-randaug-pruned``,
                  ``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
    :type model: str

    :return: The feature vectors of the input images.
    :rtype: numpy.ndarray

    Examples::
        >>> from imgutils.metrics import ccip_batch_extract_features
        >>>
        >>> feat = ccip_batch_extract_features(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg'])
        >>> feat.shape, feat.dtype
        ((3, 768), dtype('float32'))
    """
    images = load_images(images, mode='RGB')
    data = np.stack([_preprocess_image(item, size=size) for item in images]).astype(np.float32)
    output, = _open_feat_model(model).run(['output'], {'input': data})
    return output


_FeatureOrImage = Union[ImageTyping, np.ndarray]


def _p_feature(x: _FeatureOrImage, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
    if isinstance(x, np.ndarray):  # if feature
        return x
    else:  # is image or path
        return ccip_extract_feature(x, size, model)


def ccip_default_threshold(model: str = _DEFAULT_MODEL_NAMES) -> float:
    """
    Retrieves the default threshold value obtained from model metrics in the Hugging Face model repository.

    :param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
                  The available model names are: ``ccip-caformer-24-randaug-pruned``,
                  ``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
    :type model: str

    :return: The default threshold value obtained from model metrics.
    :rtype: float

    Examples::
        >>> from imgutils.metrics import ccip_default_threshold
        >>>
        >>> ccip_default_threshold()
        0.17847511429108218
        >>> ccip_default_threshold('ccip-caformer-6-randaug-pruned_fp32')
        0.1951224011983088
        >>> ccip_default_threshold('ccip-caformer-5_fp32')
        0.18397327797685215
    """
    return _open_metrics(model)['threshold']


def ccip_difference(x: _FeatureOrImage, y: _FeatureOrImage,
                    size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> float:
    """
    Calculates the difference value between two anime characters based on their images or feature vectors.

    :param x: The image or feature vector of the first anime character.
    :type x: Union[ImageTyping, np.ndarray]

    :param y: The image or feature vector of the second anime character.
    :type y: Union[ImageTyping, np.ndarray]

    :param size: The size of the input image to be used for feature extraction. (default: ``384``)
    :type size: int

    :param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
                  The available model names are: ``ccip-caformer-24-randaug-pruned``,
                  ``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
    :type model: str

    :return: The difference value between the two anime characters.
    :rtype: float

    Examples::
        >>> from imgutils.metrics import ccip_difference
        >>>
        >>> ccip_difference('ccip/1.jpg', 'ccip/2.jpg')  # same character
        0.16583099961280823
        >>>
        >>> # different characters
        >>> ccip_difference('ccip/1.jpg', 'ccip/6.jpg')
        0.42947039008140564
        >>> ccip_difference('ccip/1.jpg', 'ccip/7.jpg')
        0.4037521779537201
        >>> ccip_difference('ccip/2.jpg', 'ccip/6.jpg')
        0.4371533691883087
        >>> ccip_difference('ccip/2.jpg', 'ccip/7.jpg')
        0.40748104453086853
        >>> ccip_difference('ccip/6.jpg', 'ccip/7.jpg')
        0.392294704914093
    """
    return ccip_batch_differences([x, y], size, model)[0, 1].item()


def ccip_batch_differences(images: List[_FeatureOrImage],
                           size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> np.ndarray:
    """
    Calculates the pairwise differences between a given list of images or feature vectors representing anime characters.

    :param images: The list of images or feature vectors representing anime characters.
    :type images: List[Union[ImageTyping, np.ndarray]]

    :param size: The size of the input image to be used for feature extraction. (default: ``384``)
    :type size: int

    :param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
                  The available model names are: ``ccip-caformer-24-randaug-pruned``,
                  ``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
    :type model: str

    :return: The matrix of pairwise differences between the given images or feature vectors.
    :rtype: np.ndarray

    Examples::
        >>> from imgutils.metrics import ccip_batch_differences
        >>>
        >>> ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
        array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
               [1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
               [4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
               [4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
              dtype=float32)
    """
    input_ = np.stack([_p_feature(img, size, model) for img in images]).astype(np.float32)
    output, = _open_metric_model(model).run(['output'], {'input': input_})
    return output