File size: 8,891 Bytes
f7d50a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import json
import os.path
from functools import lru_cache
from typing import Union, List
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download, HfFileSystem
try:
from typing import Literal
except (ModuleNotFoundError, ImportError):
from typing_extensions import Literal
from imgutils.data import MultiImagesTyping, load_images, ImageTyping
from imgutils.utils import open_onnx_model
hf_fs = HfFileSystem()
def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)):
mean, std = np.asarray(mean), np.asarray(std)
return (data - mean[:, None, None]) / std[:, None, None]
def _preprocess_image(image: Image.Image, size: int = 384):
image = image.resize((size, size), resample=Image.BILINEAR)
# noinspection PyTypeChecker
data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
data = _normalize(data)
return data
@lru_cache()
def _open_feat_model(model):
return open_onnx_model(hf_hub_download(
f'deepghs/ccip_onnx',
f'{model}/model_feat.onnx',
))
@lru_cache()
def _open_metric_model(model):
return open_onnx_model(hf_hub_download(
f'deepghs/ccip_onnx',
f'{model}/model_metrics.onnx',
))
@lru_cache()
def _open_metrics(model):
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/metrics.json'), 'r') as f:
return json.load(f)
@lru_cache()
def _open_cluster_metrics(model):
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/cluster.json'), 'r') as f:
return json.load(f)
_VALID_MODEL_NAMES = [
os.path.basename(os.path.dirname(file)) for file in
hf_fs.glob('deepghs/ccip_onnx/*/model.ckpt')
]
_DEFAULT_MODEL_NAMES = 'ccip-caformer-24-randaug-pruned'
def ccip_extract_feature(image: ImageTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
"""
Extracts the feature vector of the character from the given anime image.
:param image: The anime image containing a single character.
:type image: ImageTyping
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
:type size: int
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
The available model names are: ``ccip-caformer-24-randaug-pruned``,
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
:type model: str
:return: The feature vector of the character.
:rtype: numpy.ndarray
Examples::
>>> from imgutils.metrics import ccip_extract_feature
>>>
>>> feat = ccip_extract_feature('ccip/1.jpg')
>>> feat.shape, feat.dtype
((768,), dtype('float32'))
"""
return ccip_batch_extract_features([image], size, model)[0]
def ccip_batch_extract_features(images: MultiImagesTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
"""
Extracts the feature vectors of multiple images using the specified model.
:param images: The input images from which to extract the feature vectors.
:type images: MultiImagesTyping
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
:type size: int
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
The available model names are: ``ccip-caformer-24-randaug-pruned``,
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
:type model: str
:return: The feature vectors of the input images.
:rtype: numpy.ndarray
Examples::
>>> from imgutils.metrics import ccip_batch_extract_features
>>>
>>> feat = ccip_batch_extract_features(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg'])
>>> feat.shape, feat.dtype
((3, 768), dtype('float32'))
"""
images = load_images(images, mode='RGB')
data = np.stack([_preprocess_image(item, size=size) for item in images]).astype(np.float32)
output, = _open_feat_model(model).run(['output'], {'input': data})
return output
_FeatureOrImage = Union[ImageTyping, np.ndarray]
def _p_feature(x: _FeatureOrImage, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
if isinstance(x, np.ndarray): # if feature
return x
else: # is image or path
return ccip_extract_feature(x, size, model)
def ccip_default_threshold(model: str = _DEFAULT_MODEL_NAMES) -> float:
"""
Retrieves the default threshold value obtained from model metrics in the Hugging Face model repository.
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
The available model names are: ``ccip-caformer-24-randaug-pruned``,
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
:type model: str
:return: The default threshold value obtained from model metrics.
:rtype: float
Examples::
>>> from imgutils.metrics import ccip_default_threshold
>>>
>>> ccip_default_threshold()
0.17847511429108218
>>> ccip_default_threshold('ccip-caformer-6-randaug-pruned_fp32')
0.1951224011983088
>>> ccip_default_threshold('ccip-caformer-5_fp32')
0.18397327797685215
"""
return _open_metrics(model)['threshold']
def ccip_difference(x: _FeatureOrImage, y: _FeatureOrImage,
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> float:
"""
Calculates the difference value between two anime characters based on their images or feature vectors.
:param x: The image or feature vector of the first anime character.
:type x: Union[ImageTyping, np.ndarray]
:param y: The image or feature vector of the second anime character.
:type y: Union[ImageTyping, np.ndarray]
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
:type size: int
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
The available model names are: ``ccip-caformer-24-randaug-pruned``,
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
:type model: str
:return: The difference value between the two anime characters.
:rtype: float
Examples::
>>> from imgutils.metrics import ccip_difference
>>>
>>> ccip_difference('ccip/1.jpg', 'ccip/2.jpg') # same character
0.16583099961280823
>>>
>>> # different characters
>>> ccip_difference('ccip/1.jpg', 'ccip/6.jpg')
0.42947039008140564
>>> ccip_difference('ccip/1.jpg', 'ccip/7.jpg')
0.4037521779537201
>>> ccip_difference('ccip/2.jpg', 'ccip/6.jpg')
0.4371533691883087
>>> ccip_difference('ccip/2.jpg', 'ccip/7.jpg')
0.40748104453086853
>>> ccip_difference('ccip/6.jpg', 'ccip/7.jpg')
0.392294704914093
"""
return ccip_batch_differences([x, y], size, model)[0, 1].item()
def ccip_batch_differences(images: List[_FeatureOrImage],
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> np.ndarray:
"""
Calculates the pairwise differences between a given list of images or feature vectors representing anime characters.
:param images: The list of images or feature vectors representing anime characters.
:type images: List[Union[ImageTyping, np.ndarray]]
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
:type size: int
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
The available model names are: ``ccip-caformer-24-randaug-pruned``,
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
:type model: str
:return: The matrix of pairwise differences between the given images or feature vectors.
:rtype: np.ndarray
Examples::
>>> from imgutils.metrics import ccip_batch_differences
>>>
>>> ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
[1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
[4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
[4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
dtype=float32)
"""
input_ = np.stack([_p_feature(img, size, model) for img in images]).astype(np.float32)
output, = _open_metric_model(model).run(['output'], {'input': input_})
return output
|