susnato commited on
Commit
d0675ea
·
1 Parent(s): be92c63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -9
app.py CHANGED
@@ -6,8 +6,8 @@ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
6
 
7
  dataset = load_dataset("beans")
8
 
9
- extractor = AutoFeatureExtractor.from_pretrained("nateraw/vit-base-beans")
10
- model = AutoModelForImageClassification.from_pretrained("nateraw/vit-base-beans")
11
 
12
  labels = ['angular_leaf_spot', 'rust', 'healthy']
13
 
@@ -20,7 +20,7 @@ def classify(im):
20
  return confidences
21
 
22
 
23
- block = gr.Blocks(theme="gary109/HaleyCH_Theme")
24
  with block:
25
  gr.HTML(
26
  """
@@ -33,9 +33,8 @@ with block:
33
  """
34
  <p style="color:black">
35
  <h4 style="font-color:powderblue;">
36
- <center>Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis.</center>
37
- <br>
38
- <center>Using A.I. models in plant disease detection and diagnosis has the potential to revolutionize the way we approach agriculture. By providing real-time monitoring and accurate detection of plant diseases, A.I. can help farmers reduce costs and increase crop</center>
39
  </h4>
40
  </p>
41
 
@@ -45,6 +44,18 @@ with block:
45
  """
46
  )
47
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  with gr.Group():
49
  image = gr.Image(type='pil')
50
  outputs = gr.Label()
@@ -56,9 +67,7 @@ with block:
56
  )
57
 
58
  with gr.Group():
59
- gr.Examples([
60
- ["ex1.jpg", "ex3.jpg"],
61
- ],
62
  fn=classify,
63
  inputs=[image],
64
  outputs=[outputs],
 
6
 
7
  dataset = load_dataset("beans")
8
 
9
+ extractor = AutoFeatureExtractor.from_pretrained("susnato/plant_disease_detection-beans")
10
+ model = AutoModelForImageClassification.from_pretrained("susnato/plant_disease_detection-beans")
11
 
12
  labels = ['angular_leaf_spot', 'rust', 'healthy']
13
 
 
20
  return confidences
21
 
22
 
23
+ block = gr.Blocks(theme="JohnSmith9982/small_and_pretty")
24
  with block:
25
  gr.HTML(
26
  """
 
33
  """
34
  <p style="color:black">
35
  <h4 style="font-color:powderblue;">
36
+ <center>Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. <br><br>
37
+ Using Computer Vision models in plant disease detection and diagnosis has the potential to revolutionize the way we approach agriculture. By providing real-time monitoring and accurate detection of plant diseases, A.I. can help farmers reduce costs and increase crop</center>
 
38
  </h4>
39
  </p>
40
 
 
44
  """
45
  )
46
 
47
+ with gr.Group():
48
+ with gr.Row():
49
+ gr.HTML(
50
+ """
51
+ <center><h3>Our Approach</h3></center>
52
+
53
+ <p align="center">
54
+ <img src="https://huggingface.co/datasets/susnato/stock_images/resolve/main/diagram2.png">
55
+ </p>
56
+ """
57
+ )
58
+
59
  with gr.Group():
60
  image = gr.Image(type='pil')
61
  outputs = gr.Label()
 
67
  )
68
 
69
  with gr.Group():
70
+ gr.Examples(["ex3.jpg"],
 
 
71
  fn=classify,
72
  inputs=[image],
73
  outputs=[outputs],