suryadev1 commited on
Commit
31e9520
·
1 Parent(s): 8877d7f

chart for task summary

Browse files
Files changed (4) hide show
  1. app.py +74 -30
  2. distinguish_high_low_label.ipynb +127 -25
  3. plot.png +0 -0
  4. result.txt +1 -1
app.py CHANGED
@@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
9
  from sklearn.metrics import roc_curve, auc
10
  import pandas as pd
11
  from sklearn.metrics import roc_auc_score
 
12
  # Define the function to process the input file and model selection
13
 
14
  def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
@@ -69,7 +70,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
69
  indices = test_info[test_info[0].isin(random_schools)].index.tolist()
70
  high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
71
  low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
72
-
73
  # Load the test file and select rows based on indices
74
  test = pd.read_csv(test_location, sep=',', header=None, engine='python')
75
  selected_rows_df2 = test.loc[indices]
@@ -80,7 +81,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
80
  graduation_groups = [
81
  'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
82
  ]
83
-
 
84
 
85
  with open("roc_data2.pkl", 'rb') as file:
86
  data = pickle.load(file)
@@ -88,7 +90,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
88
  p_label=data[1]
89
  # Step 1: Align graduation_group, t_label, and p_label
90
  aligned_labels = list(zip(graduation_groups, t_label, p_label))
91
-
92
  # Step 2: Separate the labels for high and low groups
93
  high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
94
  low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
@@ -96,8 +98,18 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
96
  high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
97
  low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
98
 
 
 
 
 
 
 
99
  high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
100
  low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
 
 
 
 
101
  # For demonstration purposes, we'll just return the content with the selected model name
102
 
103
  # print(checkpoint)
@@ -155,8 +167,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
155
 
156
  # Initialize counters
157
  task_counts = {
158
- 1: {"only_opt1": 0, "only_opt2": 0, "both": 0},
159
- 2: {"only_opt1": 0, "only_opt2": 0, "both": 0}
160
  }
161
 
162
  # Analyze rows
@@ -175,6 +187,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
175
  task_counts[1]["only_opt2"] += 1
176
  elif opt1_done and opt2_done:
177
  task_counts[1]["both"] += 1
 
 
178
  elif ideal_task == 1:
179
  if opt1_done and not opt2_done:
180
  task_counts[2]["only_opt1"] += 1
@@ -182,32 +196,52 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
182
  task_counts[2]["only_opt2"] += 1
183
  elif opt1_done and opt2_done:
184
  task_counts[2]["both"] += 1
 
 
185
 
186
  # Create a string output for results
187
- output_summary = "Task Analysis Summary:\n"
188
- output_summary += "-----------------------\n"
189
 
190
- for ideal_task, counts in task_counts.items():
191
- output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
192
- output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n"
193
- output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n"
194
- output_summary += f" Both done: {counts['both']}\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
  # print(output_summary)
197
 
198
  progress(0.2, desc="analysis done!! Executing models")
199
  print("finetuned task: ",finetune_task)
200
- subprocess.run([
201
- "python", "new_test_saved_finetuned_model.py",
202
- "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
203
- "-finetune_task", finetune_task,
204
- "-test_dataset_path","../../../../selected_rows.txt",
205
- # "-test_label_path","../../../../train_label.txt",
206
- "-finetuned_bert_classifier_checkpoint",
207
- "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
208
- "-e",str(1),
209
- "-b",str(1000)
210
- ])
211
  progress(0.6,desc="Model execution completed")
212
  result = {}
213
  with open("result.txt", 'r') as file:
@@ -225,10 +259,14 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
225
  fpr, tpr, _ = pickle.load(f)
226
  # print(fpr,tpr)
227
  roc_auc = auc(fpr, tpr)
228
- fig, ax = plt.subplots()
 
 
 
 
229
  ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
230
  ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
231
- ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'(Receiver Operating Curve) ROC')
232
  ax.legend(loc="lower right")
233
  ax.grid()
234
 
@@ -247,7 +285,6 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
247
  text_output = f"""
248
  Model: {model_name}\n
249
  -----------------\n
250
-
251
  Time Taken: {result['time_taken_from_start']:.2f} seconds\n
252
  Total Schools in test: {len(unique_schools):.4f}\n
253
  Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
@@ -255,9 +292,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
255
 
256
  ROC score of HGR: {high_roc_auc}\n
257
  ROC score of LGR: {low_roc_auc}\n
 
 
 
258
  -----------------\n
259
  """
260
- return text_output,plot_path,output_summary
261
 
262
  # List of models for the dropdown menu
263
 
@@ -507,12 +547,16 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
507
  gr.Markdown("<p class='description'>Dashboard</p>")
508
  with gr.Row():
509
  output_text = gr.Textbox(label="")
510
- output_image = gr.Image(label="ROC")
511
- output_summary = gr.Textbox(label="Summary")
 
 
 
 
512
 
513
  btn = gr.Button("Submit")
514
 
515
- btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image,output_summary])
516
 
517
 
518
  # Launch the app
 
9
  from sklearn.metrics import roc_curve, auc
10
  import pandas as pd
11
  from sklearn.metrics import roc_auc_score
12
+ from matplotlib.figure import Figure
13
  # Define the function to process the input file and model selection
14
 
15
  def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
 
70
  indices = test_info[test_info[0].isin(random_schools)].index.tolist()
71
  high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
72
  low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
73
+
74
  # Load the test file and select rows based on indices
75
  test = pd.read_csv(test_location, sep=',', header=None, engine='python')
76
  selected_rows_df2 = test.loc[indices]
 
81
  graduation_groups = [
82
  'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
83
  ]
84
+ # Group data by opt_task1 and opt_task2 based on test_info[6]
85
+ opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]
86
 
87
  with open("roc_data2.pkl", 'rb') as file:
88
  data = pickle.load(file)
 
90
  p_label=data[1]
91
  # Step 1: Align graduation_group, t_label, and p_label
92
  aligned_labels = list(zip(graduation_groups, t_label, p_label))
93
+ opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))
94
  # Step 2: Separate the labels for high and low groups
95
  high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
96
  low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
 
98
  high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
99
  low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
100
 
101
+ opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']
102
+ opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']
103
+
104
+ opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']
105
+ opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']
106
+
107
  high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
108
  low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
109
+
110
+ opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None
111
+ opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None
112
+
113
  # For demonstration purposes, we'll just return the content with the selected model name
114
 
115
  # print(checkpoint)
 
167
 
168
  # Initialize counters
169
  task_counts = {
170
+ 1: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0},
171
+ 2: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0}
172
  }
173
 
174
  # Analyze rows
 
187
  task_counts[1]["only_opt2"] += 1
188
  elif opt1_done and opt2_done:
189
  task_counts[1]["both"] += 1
190
+ else:
191
+ task_counts[1]["none"] +=1
192
  elif ideal_task == 1:
193
  if opt1_done and not opt2_done:
194
  task_counts[2]["only_opt1"] += 1
 
196
  task_counts[2]["only_opt2"] += 1
197
  elif opt1_done and opt2_done:
198
  task_counts[2]["both"] += 1
199
+ else:
200
+ task_counts[2]["none"] +=1
201
 
202
  # Create a string output for results
203
+ # output_summary = "Task Analysis Summary:\n"
204
+ # output_summary += "-----------------------\n"
205
 
206
+ # for ideal_task, counts in task_counts.items():
207
+ # output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
208
+ # output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n"
209
+ # output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n"
210
+ # output_summary += f" Both done: {counts['both']}\n"
211
+
212
+ # Generate pie chart for Task 1
213
+ task1_labels = list(task_counts[1].keys())
214
+ task1_values = list(task_counts[1].values())
215
+
216
+ fig_task1 = Figure()
217
+ ax1 = fig_task1.add_subplot(1, 1, 1)
218
+ ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
219
+ ax1.set_title('Ideal Task 1 Distribution')
220
+
221
+ # Generate pie chart for Task 2
222
+ task2_labels = list(task_counts[2].keys())
223
+ task2_values = list(task_counts[2].values())
224
+
225
+ fig_task2 = Figure()
226
+ ax2 = fig_task2.add_subplot(1, 1, 1)
227
+ ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
228
+ ax2.set_title('Ideal Task 2 Distribution')
229
 
230
  # print(output_summary)
231
 
232
  progress(0.2, desc="analysis done!! Executing models")
233
  print("finetuned task: ",finetune_task)
234
+ # subprocess.run([
235
+ # "python", "new_test_saved_finetuned_model.py",
236
+ # "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
237
+ # "-finetune_task", finetune_task,
238
+ # "-test_dataset_path","../../../../selected_rows.txt",
239
+ # # "-test_label_path","../../../../train_label.txt",
240
+ # "-finetuned_bert_classifier_checkpoint",
241
+ # "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
242
+ # "-e",str(1),
243
+ # "-b",str(1000)
244
+ # ])
245
  progress(0.6,desc="Model execution completed")
246
  result = {}
247
  with open("result.txt", 'r') as file:
 
259
  fpr, tpr, _ = pickle.load(f)
260
  # print(fpr,tpr)
261
  roc_auc = auc(fpr, tpr)
262
+
263
+
264
+ # Create a matplotlib figure
265
+ fig = Figure()
266
+ ax = fig.add_subplot(1, 1, 1)
267
  ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
268
  ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
269
+ ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
270
  ax.legend(loc="lower right")
271
  ax.grid()
272
 
 
285
  text_output = f"""
286
  Model: {model_name}\n
287
  -----------------\n
 
288
  Time Taken: {result['time_taken_from_start']:.2f} seconds\n
289
  Total Schools in test: {len(unique_schools):.4f}\n
290
  Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
 
292
 
293
  ROC score of HGR: {high_roc_auc}\n
294
  ROC score of LGR: {low_roc_auc}\n
295
+
296
+ ROC score of opt1: {opt_task1_roc_auc}\n
297
+ ROC score of opt2: {opt_task2_roc_auc}\n
298
  -----------------\n
299
  """
300
+ return text_output,fig,fig_task1,fig_task2
301
 
302
  # List of models for the dropdown menu
303
 
 
547
  gr.Markdown("<p class='description'>Dashboard</p>")
548
  with gr.Row():
549
  output_text = gr.Textbox(label="")
550
+ # output_image = gr.Image(label="ROC")
551
+ plot_output = gr.Plot(label="roc")
552
+ with gr.Row():
553
+ opt1_pie = gr.Plot(label="opt1")
554
+ opt2_pie = gr.Plot(label="opt2")
555
+ # output_summary = gr.Textbox(label="Summary")
556
 
557
  btn = gr.Button("Submit")
558
 
559
+ btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,plot_output,opt1_pie,opt2_pie])
560
 
561
 
562
  # Launch the app
distinguish_high_low_label.ipynb CHANGED
@@ -2,18 +2,19 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 3,
6
  "id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
7
  "metadata": {},
8
  "outputs": [],
9
  "source": [
10
  "import pickle\n",
11
- "import pandas as pd"
 
12
  ]
13
  },
14
  {
15
  "cell_type": "code",
16
- "execution_count": 4,
17
  "id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
18
  "metadata": {},
19
  "outputs": [],
@@ -31,7 +32,7 @@
31
  },
32
  {
33
  "cell_type": "code",
34
- "execution_count": 5,
35
  "id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
36
  "metadata": {},
37
  "outputs": [],
@@ -70,7 +71,7 @@
70
  },
71
  {
72
  "cell_type": "code",
73
- "execution_count": 6,
74
  "id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
75
  "metadata": {},
76
  "outputs": [],
@@ -81,7 +82,7 @@
81
  },
82
  {
83
  "cell_type": "code",
84
- "execution_count": 7,
85
  "id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
86
  "metadata": {},
87
  "outputs": [
@@ -91,7 +92,7 @@
91
  "997"
92
  ]
93
  },
94
- "execution_count": 7,
95
  "metadata": {},
96
  "output_type": "execute_result"
97
  }
@@ -102,7 +103,7 @@
102
  },
103
  {
104
  "cell_type": "code",
105
- "execution_count": 8,
106
  "id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
107
  "metadata": {},
108
  "outputs": [
@@ -197,7 +198,7 @@
197
  "[997 rows x 1 columns]"
198
  ]
199
  },
200
- "execution_count": 8,
201
  "metadata": {},
202
  "output_type": "execute_result"
203
  }
@@ -211,20 +212,54 @@
211
  },
212
  {
213
  "cell_type": "code",
214
- "execution_count": 11,
215
  "id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
216
  "metadata": {},
217
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
218
  "source": [
219
  "graduation_groups = [\n",
220
  " 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
221
  "]\n",
222
- "# graduation_groups"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  ]
224
  },
225
  {
226
  "cell_type": "code",
227
- "execution_count": 43,
228
  "id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
229
  "metadata": {},
230
  "outputs": [],
@@ -235,21 +270,51 @@
235
  },
236
  {
237
  "cell_type": "code",
238
- "execution_count": 47,
239
  "id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
240
  "metadata": {},
241
  "outputs": [],
242
  "source": [
243
  "# Step 1: Align graduation_group, t_label, and p_label\n",
244
  "aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
245
- "\n",
246
  "# Step 2: Separate the labels for high and low groups\n",
247
  "high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
248
  "low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
249
  "\n",
250
  "high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
251
  "low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
252
- "\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  ]
254
  },
255
  {
@@ -275,17 +340,15 @@
275
  },
276
  {
277
  "cell_type": "code",
278
- "execution_count": 51,
279
  "id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
280
  "metadata": {},
281
  "outputs": [],
282
- "source": [
283
- "from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
284
- ]
285
  },
286
  {
287
  "cell_type": "code",
288
- "execution_count": 52,
289
  "id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
290
  "metadata": {},
291
  "outputs": [
@@ -308,7 +371,7 @@
308
  },
309
  {
310
  "cell_type": "code",
311
- "execution_count": 9,
312
  "id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
313
  "metadata": {},
314
  "outputs": [
@@ -322,10 +385,12 @@
322
  " Only OptionalTask_1 done: 22501\n",
323
  " Only OptionalTask_2 done: 20014\n",
324
  " Both done: 24854\n",
 
325
  "Ideal Task = OptionalTask_2:\n",
326
  " Only OptionalTask_1 done: 12588\n",
327
  " Only OptionalTask_2 done: 18942\n",
328
  " Both done: 15147\n",
 
329
  "\n"
330
  ]
331
  }
@@ -377,8 +442,8 @@
377
  "\n",
378
  "# Initialize counters\n",
379
  "task_counts = {\n",
380
- " 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
381
- " 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
382
  "}\n",
383
  "\n",
384
  "# Analyze rows\n",
@@ -397,6 +462,8 @@
397
  " task_counts[1][\"only_opt2\"] += 1\n",
398
  " elif opt1_done and opt2_done:\n",
399
  " task_counts[1][\"both\"] += 1\n",
 
 
400
  " elif ideal_task == 1:\n",
401
  " if opt1_done and not opt2_done:\n",
402
  " task_counts[2][\"only_opt1\"] += 1\n",
@@ -404,6 +471,8 @@
404
  " task_counts[2][\"only_opt2\"] += 1\n",
405
  " elif opt1_done and opt2_done:\n",
406
  " task_counts[2][\"both\"] += 1\n",
 
 
407
  "\n",
408
  "# Create a string output for results\n",
409
  "output_summary = \"Task Analysis Summary:\\n\"\n",
@@ -414,14 +483,47 @@
414
  " output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
415
  " output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
416
  " output_summary += f\" Both done: {counts['both']}\\n\"\n",
 
417
  "\n",
418
  "print(output_summary)\n"
419
  ]
420
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421
  {
422
  "cell_type": "code",
423
  "execution_count": null,
424
- "id": "65ad9383-741f-44eb-8e8f-853ee7bc52a2",
425
  "metadata": {},
426
  "outputs": [],
427
  "source": []
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 27,
6
  "id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
7
  "metadata": {},
8
  "outputs": [],
9
  "source": [
10
  "import pickle\n",
11
+ "import pandas as pd\n",
12
+ "from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score,auc"
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
+ "execution_count": 3,
18
  "id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
19
  "metadata": {},
20
  "outputs": [],
 
32
  },
33
  {
34
  "cell_type": "code",
35
+ "execution_count": 4,
36
  "id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
37
  "metadata": {},
38
  "outputs": [],
 
71
  },
72
  {
73
  "cell_type": "code",
74
+ "execution_count": 5,
75
  "id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
76
  "metadata": {},
77
  "outputs": [],
 
82
  },
83
  {
84
  "cell_type": "code",
85
+ "execution_count": 6,
86
  "id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
87
  "metadata": {},
88
  "outputs": [
 
92
  "997"
93
  ]
94
  },
95
+ "execution_count": 6,
96
  "metadata": {},
97
  "output_type": "execute_result"
98
  }
 
103
  },
104
  {
105
  "cell_type": "code",
106
+ "execution_count": 7,
107
  "id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
108
  "metadata": {},
109
  "outputs": [
 
198
  "[997 rows x 1 columns]"
199
  ]
200
  },
201
+ "execution_count": 7,
202
  "metadata": {},
203
  "output_type": "execute_result"
204
  }
 
212
  },
213
  {
214
  "cell_type": "code",
215
+ "execution_count": 8,
216
  "id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
217
  "metadata": {},
218
+ "outputs": [
219
+ {
220
+ "data": {
221
+ "text/plain": [
222
+ "997"
223
+ ]
224
+ },
225
+ "execution_count": 8,
226
+ "metadata": {},
227
+ "output_type": "execute_result"
228
+ }
229
+ ],
230
  "source": [
231
  "graduation_groups = [\n",
232
  " 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
233
  "]\n",
234
+ "# graduation_groups\n",
235
+ "len(graduation_groups)"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "code",
240
+ "execution_count": 9,
241
+ "id": "d2508a0f-e5ca-432e-b99b-481ea4536d4d",
242
+ "metadata": {},
243
+ "outputs": [
244
+ {
245
+ "data": {
246
+ "text/plain": [
247
+ "997"
248
+ ]
249
+ },
250
+ "execution_count": 9,
251
+ "metadata": {},
252
+ "output_type": "execute_result"
253
+ }
254
+ ],
255
+ "source": [
256
+ "opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]\n",
257
+ "len(opt_task_groups)"
258
  ]
259
  },
260
  {
261
  "cell_type": "code",
262
+ "execution_count": 10,
263
  "id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
264
  "metadata": {},
265
  "outputs": [],
 
270
  },
271
  {
272
  "cell_type": "code",
273
+ "execution_count": 12,
274
  "id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
275
  "metadata": {},
276
  "outputs": [],
277
  "source": [
278
  "# Step 1: Align graduation_group, t_label, and p_label\n",
279
  "aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
280
+ "opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))\n",
281
  "# Step 2: Separate the labels for high and low groups\n",
282
  "high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
283
  "low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
284
  "\n",
285
  "high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
286
  "low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
287
+ "\n",
288
+ "\n",
289
+ "opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']\n",
290
+ "opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']\n",
291
+ "\n",
292
+ "opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']\n",
293
+ "opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']\n"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": 15,
299
+ "id": "74cda932-ce98-4ad5-9c29-a54bdc4ee086",
300
+ "metadata": {},
301
+ "outputs": [
302
+ {
303
+ "name": "stdout",
304
+ "output_type": "stream",
305
+ "text": [
306
+ "opt_task1 ROC-AUC: 0.7592686234399062\n",
307
+ "opt_task2 ROC-AUC: 0.7268598353289777\n"
308
+ ]
309
+ }
310
+ ],
311
+ "source": [
312
+ "\n",
313
+ "opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None\n",
314
+ "opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None\n",
315
+ "\n",
316
+ "print(f\"opt_task1 ROC-AUC: {opt_task1_roc_auc}\")\n",
317
+ "print(f\"opt_task2 ROC-AUC: {opt_task2_roc_auc}\")"
318
  ]
319
  },
320
  {
 
340
  },
341
  {
342
  "cell_type": "code",
343
+ "execution_count": 13,
344
  "id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
345
  "metadata": {},
346
  "outputs": [],
347
+ "source": []
 
 
348
  },
349
  {
350
  "cell_type": "code",
351
+ "execution_count": 16,
352
  "id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
353
  "metadata": {},
354
  "outputs": [
 
371
  },
372
  {
373
  "cell_type": "code",
374
+ "execution_count": 21,
375
  "id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
376
  "metadata": {},
377
  "outputs": [
 
385
  " Only OptionalTask_1 done: 22501\n",
386
  " Only OptionalTask_2 done: 20014\n",
387
  " Both done: 24854\n",
388
+ " None done: 38\n",
389
  "Ideal Task = OptionalTask_2:\n",
390
  " Only OptionalTask_1 done: 12588\n",
391
  " Only OptionalTask_2 done: 18942\n",
392
  " Both done: 15147\n",
393
+ " None done: 78\n",
394
  "\n"
395
  ]
396
  }
 
442
  "\n",
443
  "# Initialize counters\n",
444
  "task_counts = {\n",
445
+ " 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0,\"none\":0},\n",
446
+ " 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0,\"none\":0}\n",
447
  "}\n",
448
  "\n",
449
  "# Analyze rows\n",
 
462
  " task_counts[1][\"only_opt2\"] += 1\n",
463
  " elif opt1_done and opt2_done:\n",
464
  " task_counts[1][\"both\"] += 1\n",
465
+ " else:\n",
466
+ " task_counts[1][\"none\"] +=1\n",
467
  " elif ideal_task == 1:\n",
468
  " if opt1_done and not opt2_done:\n",
469
  " task_counts[2][\"only_opt1\"] += 1\n",
 
471
  " task_counts[2][\"only_opt2\"] += 1\n",
472
  " elif opt1_done and opt2_done:\n",
473
  " task_counts[2][\"both\"] += 1\n",
474
+ " else:\n",
475
+ " task_counts[2][\"none\"] +=1\n",
476
  "\n",
477
  "# Create a string output for results\n",
478
  "output_summary = \"Task Analysis Summary:\\n\"\n",
 
483
  " output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
484
  " output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
485
  " output_summary += f\" Both done: {counts['both']}\\n\"\n",
486
+ " output_summary += f\" None done: {counts['none']}\\n\"\n",
487
  "\n",
488
  "print(output_summary)\n"
489
  ]
490
  },
491
+ {
492
+ "cell_type": "code",
493
+ "execution_count": 23,
494
+ "id": "3630406c-859a-43ab-a569-67d577cc9bf6",
495
+ "metadata": {},
496
+ "outputs": [],
497
+ "source": [
498
+ "import gradio as gr\n",
499
+ "from matplotlib.figure import Figure"
500
+ ]
501
+ },
502
+ {
503
+ "cell_type": "code",
504
+ "execution_count": 28,
505
+ "id": "99833638-882d-4c75-bcc3-031e39cfb5a7",
506
+ "metadata": {},
507
+ "outputs": [],
508
+ "source": [
509
+ "with open(\"roc_data.pkl\", \"rb\") as f:\n",
510
+ " fpr, tpr, _ = pickle.load(f)\n",
511
+ "roc_auc = auc(fpr, tpr)\n",
512
+ "\n",
513
+ "# Create a matplotlib figure\n",
514
+ "fig = Figure()\n",
515
+ "ax = fig.add_subplot(1, 1, 1)\n",
516
+ "ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')\n",
517
+ "ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')\n",
518
+ "ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')\n",
519
+ "ax.legend(loc=\"lower right\")\n",
520
+ "ax.grid()"
521
+ ]
522
+ },
523
  {
524
  "cell_type": "code",
525
  "execution_count": null,
526
+ "id": "6eb3dece-5b33-4223-af9a-6b999bb2305b",
527
  "metadata": {},
528
  "outputs": [],
529
  "source": []
plot.png CHANGED
result.txt CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
3
  precisions: 0.7236623191454734
4
  recalls: 0.6900702106318957
5
  f1_scores: 0.6802420656474512
6
- time_taken_from_start: 21.604072332382202
7
  auc_score: 0.7457100293916334
 
3
  precisions: 0.7236623191454734
4
  recalls: 0.6900702106318957
5
  f1_scores: 0.6802420656474512
6
+ time_taken_from_start: 25.420082330703735
7
  auc_score: 0.7457100293916334