Spaces:
Running
Running
chart for task summary
Browse files- app.py +74 -30
- distinguish_high_low_label.ipynb +127 -25
- plot.png +0 -0
- result.txt +1 -1
app.py
CHANGED
@@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
|
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
11 |
from sklearn.metrics import roc_auc_score
|
|
|
12 |
# Define the function to process the input file and model selection
|
13 |
|
14 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
@@ -69,7 +70,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
69 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
70 |
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
|
71 |
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
|
72 |
-
|
73 |
# Load the test file and select rows based on indices
|
74 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
75 |
selected_rows_df2 = test.loc[indices]
|
@@ -80,7 +81,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
80 |
graduation_groups = [
|
81 |
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
|
82 |
]
|
83 |
-
|
|
|
84 |
|
85 |
with open("roc_data2.pkl", 'rb') as file:
|
86 |
data = pickle.load(file)
|
@@ -88,7 +90,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
88 |
p_label=data[1]
|
89 |
# Step 1: Align graduation_group, t_label, and p_label
|
90 |
aligned_labels = list(zip(graduation_groups, t_label, p_label))
|
91 |
-
|
92 |
# Step 2: Separate the labels for high and low groups
|
93 |
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
|
94 |
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
|
@@ -96,8 +98,18 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
96 |
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
|
97 |
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
|
100 |
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
|
|
|
|
|
|
|
|
|
101 |
# For demonstration purposes, we'll just return the content with the selected model name
|
102 |
|
103 |
# print(checkpoint)
|
@@ -155,8 +167,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
155 |
|
156 |
# Initialize counters
|
157 |
task_counts = {
|
158 |
-
|
159 |
-
|
160 |
}
|
161 |
|
162 |
# Analyze rows
|
@@ -175,6 +187,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
175 |
task_counts[1]["only_opt2"] += 1
|
176 |
elif opt1_done and opt2_done:
|
177 |
task_counts[1]["both"] += 1
|
|
|
|
|
178 |
elif ideal_task == 1:
|
179 |
if opt1_done and not opt2_done:
|
180 |
task_counts[2]["only_opt1"] += 1
|
@@ -182,32 +196,52 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
182 |
task_counts[2]["only_opt2"] += 1
|
183 |
elif opt1_done and opt2_done:
|
184 |
task_counts[2]["both"] += 1
|
|
|
|
|
185 |
|
186 |
# Create a string output for results
|
187 |
-
output_summary = "Task Analysis Summary:\n"
|
188 |
-
output_summary += "-----------------------\n"
|
189 |
|
190 |
-
for ideal_task, counts in task_counts.items():
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# print(output_summary)
|
197 |
|
198 |
progress(0.2, desc="analysis done!! Executing models")
|
199 |
print("finetuned task: ",finetune_task)
|
200 |
-
subprocess.run([
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
])
|
211 |
progress(0.6,desc="Model execution completed")
|
212 |
result = {}
|
213 |
with open("result.txt", 'r') as file:
|
@@ -225,10 +259,14 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
225 |
fpr, tpr, _ = pickle.load(f)
|
226 |
# print(fpr,tpr)
|
227 |
roc_auc = auc(fpr, tpr)
|
228 |
-
|
|
|
|
|
|
|
|
|
229 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
230 |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
|
231 |
-
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'
|
232 |
ax.legend(loc="lower right")
|
233 |
ax.grid()
|
234 |
|
@@ -247,7 +285,6 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
247 |
text_output = f"""
|
248 |
Model: {model_name}\n
|
249 |
-----------------\n
|
250 |
-
|
251 |
Time Taken: {result['time_taken_from_start']:.2f} seconds\n
|
252 |
Total Schools in test: {len(unique_schools):.4f}\n
|
253 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
@@ -255,9 +292,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
255 |
|
256 |
ROC score of HGR: {high_roc_auc}\n
|
257 |
ROC score of LGR: {low_roc_auc}\n
|
|
|
|
|
|
|
258 |
-----------------\n
|
259 |
"""
|
260 |
-
return text_output,
|
261 |
|
262 |
# List of models for the dropdown menu
|
263 |
|
@@ -507,12 +547,16 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
507 |
gr.Markdown("<p class='description'>Dashboard</p>")
|
508 |
with gr.Row():
|
509 |
output_text = gr.Textbox(label="")
|
510 |
-
output_image = gr.Image(label="ROC")
|
511 |
-
|
|
|
|
|
|
|
|
|
512 |
|
513 |
btn = gr.Button("Submit")
|
514 |
|
515 |
-
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,
|
516 |
|
517 |
|
518 |
# Launch the app
|
|
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
11 |
from sklearn.metrics import roc_auc_score
|
12 |
+
from matplotlib.figure import Figure
|
13 |
# Define the function to process the input file and model selection
|
14 |
|
15 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
|
70 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
71 |
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
|
72 |
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
|
73 |
+
|
74 |
# Load the test file and select rows based on indices
|
75 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
76 |
selected_rows_df2 = test.loc[indices]
|
|
|
81 |
graduation_groups = [
|
82 |
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
|
83 |
]
|
84 |
+
# Group data by opt_task1 and opt_task2 based on test_info[6]
|
85 |
+
opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]
|
86 |
|
87 |
with open("roc_data2.pkl", 'rb') as file:
|
88 |
data = pickle.load(file)
|
|
|
90 |
p_label=data[1]
|
91 |
# Step 1: Align graduation_group, t_label, and p_label
|
92 |
aligned_labels = list(zip(graduation_groups, t_label, p_label))
|
93 |
+
opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))
|
94 |
# Step 2: Separate the labels for high and low groups
|
95 |
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
|
96 |
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
|
|
|
98 |
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
|
99 |
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
|
100 |
|
101 |
+
opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']
|
102 |
+
opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']
|
103 |
+
|
104 |
+
opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']
|
105 |
+
opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']
|
106 |
+
|
107 |
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
|
108 |
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
|
109 |
+
|
110 |
+
opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None
|
111 |
+
opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None
|
112 |
+
|
113 |
# For demonstration purposes, we'll just return the content with the selected model name
|
114 |
|
115 |
# print(checkpoint)
|
|
|
167 |
|
168 |
# Initialize counters
|
169 |
task_counts = {
|
170 |
+
1: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0},
|
171 |
+
2: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0}
|
172 |
}
|
173 |
|
174 |
# Analyze rows
|
|
|
187 |
task_counts[1]["only_opt2"] += 1
|
188 |
elif opt1_done and opt2_done:
|
189 |
task_counts[1]["both"] += 1
|
190 |
+
else:
|
191 |
+
task_counts[1]["none"] +=1
|
192 |
elif ideal_task == 1:
|
193 |
if opt1_done and not opt2_done:
|
194 |
task_counts[2]["only_opt1"] += 1
|
|
|
196 |
task_counts[2]["only_opt2"] += 1
|
197 |
elif opt1_done and opt2_done:
|
198 |
task_counts[2]["both"] += 1
|
199 |
+
else:
|
200 |
+
task_counts[2]["none"] +=1
|
201 |
|
202 |
# Create a string output for results
|
203 |
+
# output_summary = "Task Analysis Summary:\n"
|
204 |
+
# output_summary += "-----------------------\n"
|
205 |
|
206 |
+
# for ideal_task, counts in task_counts.items():
|
207 |
+
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
208 |
+
# output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n"
|
209 |
+
# output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n"
|
210 |
+
# output_summary += f" Both done: {counts['both']}\n"
|
211 |
+
|
212 |
+
# Generate pie chart for Task 1
|
213 |
+
task1_labels = list(task_counts[1].keys())
|
214 |
+
task1_values = list(task_counts[1].values())
|
215 |
+
|
216 |
+
fig_task1 = Figure()
|
217 |
+
ax1 = fig_task1.add_subplot(1, 1, 1)
|
218 |
+
ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
|
219 |
+
ax1.set_title('Ideal Task 1 Distribution')
|
220 |
+
|
221 |
+
# Generate pie chart for Task 2
|
222 |
+
task2_labels = list(task_counts[2].keys())
|
223 |
+
task2_values = list(task_counts[2].values())
|
224 |
+
|
225 |
+
fig_task2 = Figure()
|
226 |
+
ax2 = fig_task2.add_subplot(1, 1, 1)
|
227 |
+
ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
|
228 |
+
ax2.set_title('Ideal Task 2 Distribution')
|
229 |
|
230 |
# print(output_summary)
|
231 |
|
232 |
progress(0.2, desc="analysis done!! Executing models")
|
233 |
print("finetuned task: ",finetune_task)
|
234 |
+
# subprocess.run([
|
235 |
+
# "python", "new_test_saved_finetuned_model.py",
|
236 |
+
# "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
|
237 |
+
# "-finetune_task", finetune_task,
|
238 |
+
# "-test_dataset_path","../../../../selected_rows.txt",
|
239 |
+
# # "-test_label_path","../../../../train_label.txt",
|
240 |
+
# "-finetuned_bert_classifier_checkpoint",
|
241 |
+
# "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
|
242 |
+
# "-e",str(1),
|
243 |
+
# "-b",str(1000)
|
244 |
+
# ])
|
245 |
progress(0.6,desc="Model execution completed")
|
246 |
result = {}
|
247 |
with open("result.txt", 'r') as file:
|
|
|
259 |
fpr, tpr, _ = pickle.load(f)
|
260 |
# print(fpr,tpr)
|
261 |
roc_auc = auc(fpr, tpr)
|
262 |
+
|
263 |
+
|
264 |
+
# Create a matplotlib figure
|
265 |
+
fig = Figure()
|
266 |
+
ax = fig.add_subplot(1, 1, 1)
|
267 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
268 |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
|
269 |
+
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
|
270 |
ax.legend(loc="lower right")
|
271 |
ax.grid()
|
272 |
|
|
|
285 |
text_output = f"""
|
286 |
Model: {model_name}\n
|
287 |
-----------------\n
|
|
|
288 |
Time Taken: {result['time_taken_from_start']:.2f} seconds\n
|
289 |
Total Schools in test: {len(unique_schools):.4f}\n
|
290 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
|
|
292 |
|
293 |
ROC score of HGR: {high_roc_auc}\n
|
294 |
ROC score of LGR: {low_roc_auc}\n
|
295 |
+
|
296 |
+
ROC score of opt1: {opt_task1_roc_auc}\n
|
297 |
+
ROC score of opt2: {opt_task2_roc_auc}\n
|
298 |
-----------------\n
|
299 |
"""
|
300 |
+
return text_output,fig,fig_task1,fig_task2
|
301 |
|
302 |
# List of models for the dropdown menu
|
303 |
|
|
|
547 |
gr.Markdown("<p class='description'>Dashboard</p>")
|
548 |
with gr.Row():
|
549 |
output_text = gr.Textbox(label="")
|
550 |
+
# output_image = gr.Image(label="ROC")
|
551 |
+
plot_output = gr.Plot(label="roc")
|
552 |
+
with gr.Row():
|
553 |
+
opt1_pie = gr.Plot(label="opt1")
|
554 |
+
opt2_pie = gr.Plot(label="opt2")
|
555 |
+
# output_summary = gr.Textbox(label="Summary")
|
556 |
|
557 |
btn = gr.Button("Submit")
|
558 |
|
559 |
+
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,plot_output,opt1_pie,opt2_pie])
|
560 |
|
561 |
|
562 |
# Launch the app
|
distinguish_high_low_label.ipynb
CHANGED
@@ -2,18 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import pickle\n",
|
11 |
-
"import pandas as pd"
|
|
|
12 |
]
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
-
"execution_count":
|
17 |
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
@@ -31,7 +32,7 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
@@ -70,7 +71,7 @@
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
-
"execution_count":
|
74 |
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
75 |
"metadata": {},
|
76 |
"outputs": [],
|
@@ -81,7 +82,7 @@
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
-
"execution_count":
|
85 |
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
86 |
"metadata": {},
|
87 |
"outputs": [
|
@@ -91,7 +92,7 @@
|
|
91 |
"997"
|
92 |
]
|
93 |
},
|
94 |
-
"execution_count":
|
95 |
"metadata": {},
|
96 |
"output_type": "execute_result"
|
97 |
}
|
@@ -102,7 +103,7 @@
|
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
-
"execution_count":
|
106 |
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
107 |
"metadata": {},
|
108 |
"outputs": [
|
@@ -197,7 +198,7 @@
|
|
197 |
"[997 rows x 1 columns]"
|
198 |
]
|
199 |
},
|
200 |
-
"execution_count":
|
201 |
"metadata": {},
|
202 |
"output_type": "execute_result"
|
203 |
}
|
@@ -211,20 +212,54 @@
|
|
211 |
},
|
212 |
{
|
213 |
"cell_type": "code",
|
214 |
-
"execution_count":
|
215 |
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
216 |
"metadata": {},
|
217 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
"source": [
|
219 |
"graduation_groups = [\n",
|
220 |
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
221 |
"]\n",
|
222 |
-
"# graduation_groups"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
]
|
224 |
},
|
225 |
{
|
226 |
"cell_type": "code",
|
227 |
-
"execution_count":
|
228 |
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
229 |
"metadata": {},
|
230 |
"outputs": [],
|
@@ -235,21 +270,51 @@
|
|
235 |
},
|
236 |
{
|
237 |
"cell_type": "code",
|
238 |
-
"execution_count":
|
239 |
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
240 |
"metadata": {},
|
241 |
"outputs": [],
|
242 |
"source": [
|
243 |
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
244 |
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
245 |
-
"\n",
|
246 |
"# Step 2: Separate the labels for high and low groups\n",
|
247 |
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
248 |
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
249 |
"\n",
|
250 |
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
251 |
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
252 |
-
"\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
]
|
254 |
},
|
255 |
{
|
@@ -275,17 +340,15 @@
|
|
275 |
},
|
276 |
{
|
277 |
"cell_type": "code",
|
278 |
-
"execution_count":
|
279 |
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
280 |
"metadata": {},
|
281 |
"outputs": [],
|
282 |
-
"source": [
|
283 |
-
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
|
284 |
-
]
|
285 |
},
|
286 |
{
|
287 |
"cell_type": "code",
|
288 |
-
"execution_count":
|
289 |
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
290 |
"metadata": {},
|
291 |
"outputs": [
|
@@ -308,7 +371,7 @@
|
|
308 |
},
|
309 |
{
|
310 |
"cell_type": "code",
|
311 |
-
"execution_count":
|
312 |
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
313 |
"metadata": {},
|
314 |
"outputs": [
|
@@ -322,10 +385,12 @@
|
|
322 |
" Only OptionalTask_1 done: 22501\n",
|
323 |
" Only OptionalTask_2 done: 20014\n",
|
324 |
" Both done: 24854\n",
|
|
|
325 |
"Ideal Task = OptionalTask_2:\n",
|
326 |
" Only OptionalTask_1 done: 12588\n",
|
327 |
" Only OptionalTask_2 done: 18942\n",
|
328 |
" Both done: 15147\n",
|
|
|
329 |
"\n"
|
330 |
]
|
331 |
}
|
@@ -377,8 +442,8 @@
|
|
377 |
"\n",
|
378 |
"# Initialize counters\n",
|
379 |
"task_counts = {\n",
|
380 |
-
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
|
381 |
-
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
|
382 |
"}\n",
|
383 |
"\n",
|
384 |
"# Analyze rows\n",
|
@@ -397,6 +462,8 @@
|
|
397 |
" task_counts[1][\"only_opt2\"] += 1\n",
|
398 |
" elif opt1_done and opt2_done:\n",
|
399 |
" task_counts[1][\"both\"] += 1\n",
|
|
|
|
|
400 |
" elif ideal_task == 1:\n",
|
401 |
" if opt1_done and not opt2_done:\n",
|
402 |
" task_counts[2][\"only_opt1\"] += 1\n",
|
@@ -404,6 +471,8 @@
|
|
404 |
" task_counts[2][\"only_opt2\"] += 1\n",
|
405 |
" elif opt1_done and opt2_done:\n",
|
406 |
" task_counts[2][\"both\"] += 1\n",
|
|
|
|
|
407 |
"\n",
|
408 |
"# Create a string output for results\n",
|
409 |
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
@@ -414,14 +483,47 @@
|
|
414 |
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
415 |
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
416 |
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
|
|
417 |
"\n",
|
418 |
"print(output_summary)\n"
|
419 |
]
|
420 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
{
|
422 |
"cell_type": "code",
|
423 |
"execution_count": null,
|
424 |
-
"id": "
|
425 |
"metadata": {},
|
426 |
"outputs": [],
|
427 |
"source": []
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 27,
|
6 |
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import pickle\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score,auc"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 3,
|
18 |
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
19 |
"metadata": {},
|
20 |
"outputs": [],
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 4,
|
36 |
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
37 |
"metadata": {},
|
38 |
"outputs": [],
|
|
|
71 |
},
|
72 |
{
|
73 |
"cell_type": "code",
|
74 |
+
"execution_count": 5,
|
75 |
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
76 |
"metadata": {},
|
77 |
"outputs": [],
|
|
|
82 |
},
|
83 |
{
|
84 |
"cell_type": "code",
|
85 |
+
"execution_count": 6,
|
86 |
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
87 |
"metadata": {},
|
88 |
"outputs": [
|
|
|
92 |
"997"
|
93 |
]
|
94 |
},
|
95 |
+
"execution_count": 6,
|
96 |
"metadata": {},
|
97 |
"output_type": "execute_result"
|
98 |
}
|
|
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
+
"execution_count": 7,
|
107 |
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
108 |
"metadata": {},
|
109 |
"outputs": [
|
|
|
198 |
"[997 rows x 1 columns]"
|
199 |
]
|
200 |
},
|
201 |
+
"execution_count": 7,
|
202 |
"metadata": {},
|
203 |
"output_type": "execute_result"
|
204 |
}
|
|
|
212 |
},
|
213 |
{
|
214 |
"cell_type": "code",
|
215 |
+
"execution_count": 8,
|
216 |
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
217 |
"metadata": {},
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"data": {
|
221 |
+
"text/plain": [
|
222 |
+
"997"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
"execution_count": 8,
|
226 |
+
"metadata": {},
|
227 |
+
"output_type": "execute_result"
|
228 |
+
}
|
229 |
+
],
|
230 |
"source": [
|
231 |
"graduation_groups = [\n",
|
232 |
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
233 |
"]\n",
|
234 |
+
"# graduation_groups\n",
|
235 |
+
"len(graduation_groups)"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 9,
|
241 |
+
"id": "d2508a0f-e5ca-432e-b99b-481ea4536d4d",
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [
|
244 |
+
{
|
245 |
+
"data": {
|
246 |
+
"text/plain": [
|
247 |
+
"997"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
"execution_count": 9,
|
251 |
+
"metadata": {},
|
252 |
+
"output_type": "execute_result"
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"source": [
|
256 |
+
"opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]\n",
|
257 |
+
"len(opt_task_groups)"
|
258 |
]
|
259 |
},
|
260 |
{
|
261 |
"cell_type": "code",
|
262 |
+
"execution_count": 10,
|
263 |
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
264 |
"metadata": {},
|
265 |
"outputs": [],
|
|
|
270 |
},
|
271 |
{
|
272 |
"cell_type": "code",
|
273 |
+
"execution_count": 12,
|
274 |
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
275 |
"metadata": {},
|
276 |
"outputs": [],
|
277 |
"source": [
|
278 |
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
279 |
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
280 |
+
"opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))\n",
|
281 |
"# Step 2: Separate the labels for high and low groups\n",
|
282 |
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
283 |
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
284 |
"\n",
|
285 |
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
286 |
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
287 |
+
"\n",
|
288 |
+
"\n",
|
289 |
+
"opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']\n",
|
290 |
+
"opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']\n",
|
291 |
+
"\n",
|
292 |
+
"opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']\n",
|
293 |
+
"opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']\n"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 15,
|
299 |
+
"id": "74cda932-ce98-4ad5-9c29-a54bdc4ee086",
|
300 |
+
"metadata": {},
|
301 |
+
"outputs": [
|
302 |
+
{
|
303 |
+
"name": "stdout",
|
304 |
+
"output_type": "stream",
|
305 |
+
"text": [
|
306 |
+
"opt_task1 ROC-AUC: 0.7592686234399062\n",
|
307 |
+
"opt_task2 ROC-AUC: 0.7268598353289777\n"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"source": [
|
312 |
+
"\n",
|
313 |
+
"opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None\n",
|
314 |
+
"opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None\n",
|
315 |
+
"\n",
|
316 |
+
"print(f\"opt_task1 ROC-AUC: {opt_task1_roc_auc}\")\n",
|
317 |
+
"print(f\"opt_task2 ROC-AUC: {opt_task2_roc_auc}\")"
|
318 |
]
|
319 |
},
|
320 |
{
|
|
|
340 |
},
|
341 |
{
|
342 |
"cell_type": "code",
|
343 |
+
"execution_count": 13,
|
344 |
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
345 |
"metadata": {},
|
346 |
"outputs": [],
|
347 |
+
"source": []
|
|
|
|
|
348 |
},
|
349 |
{
|
350 |
"cell_type": "code",
|
351 |
+
"execution_count": 16,
|
352 |
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
353 |
"metadata": {},
|
354 |
"outputs": [
|
|
|
371 |
},
|
372 |
{
|
373 |
"cell_type": "code",
|
374 |
+
"execution_count": 21,
|
375 |
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
376 |
"metadata": {},
|
377 |
"outputs": [
|
|
|
385 |
" Only OptionalTask_1 done: 22501\n",
|
386 |
" Only OptionalTask_2 done: 20014\n",
|
387 |
" Both done: 24854\n",
|
388 |
+
" None done: 38\n",
|
389 |
"Ideal Task = OptionalTask_2:\n",
|
390 |
" Only OptionalTask_1 done: 12588\n",
|
391 |
" Only OptionalTask_2 done: 18942\n",
|
392 |
" Both done: 15147\n",
|
393 |
+
" None done: 78\n",
|
394 |
"\n"
|
395 |
]
|
396 |
}
|
|
|
442 |
"\n",
|
443 |
"# Initialize counters\n",
|
444 |
"task_counts = {\n",
|
445 |
+
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0,\"none\":0},\n",
|
446 |
+
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0,\"none\":0}\n",
|
447 |
"}\n",
|
448 |
"\n",
|
449 |
"# Analyze rows\n",
|
|
|
462 |
" task_counts[1][\"only_opt2\"] += 1\n",
|
463 |
" elif opt1_done and opt2_done:\n",
|
464 |
" task_counts[1][\"both\"] += 1\n",
|
465 |
+
" else:\n",
|
466 |
+
" task_counts[1][\"none\"] +=1\n",
|
467 |
" elif ideal_task == 1:\n",
|
468 |
" if opt1_done and not opt2_done:\n",
|
469 |
" task_counts[2][\"only_opt1\"] += 1\n",
|
|
|
471 |
" task_counts[2][\"only_opt2\"] += 1\n",
|
472 |
" elif opt1_done and opt2_done:\n",
|
473 |
" task_counts[2][\"both\"] += 1\n",
|
474 |
+
" else:\n",
|
475 |
+
" task_counts[2][\"none\"] +=1\n",
|
476 |
"\n",
|
477 |
"# Create a string output for results\n",
|
478 |
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
|
|
483 |
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
484 |
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
485 |
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
486 |
+
" output_summary += f\" None done: {counts['none']}\\n\"\n",
|
487 |
"\n",
|
488 |
"print(output_summary)\n"
|
489 |
]
|
490 |
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": 23,
|
494 |
+
"id": "3630406c-859a-43ab-a569-67d577cc9bf6",
|
495 |
+
"metadata": {},
|
496 |
+
"outputs": [],
|
497 |
+
"source": [
|
498 |
+
"import gradio as gr\n",
|
499 |
+
"from matplotlib.figure import Figure"
|
500 |
+
]
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"cell_type": "code",
|
504 |
+
"execution_count": 28,
|
505 |
+
"id": "99833638-882d-4c75-bcc3-031e39cfb5a7",
|
506 |
+
"metadata": {},
|
507 |
+
"outputs": [],
|
508 |
+
"source": [
|
509 |
+
"with open(\"roc_data.pkl\", \"rb\") as f:\n",
|
510 |
+
" fpr, tpr, _ = pickle.load(f)\n",
|
511 |
+
"roc_auc = auc(fpr, tpr)\n",
|
512 |
+
"\n",
|
513 |
+
"# Create a matplotlib figure\n",
|
514 |
+
"fig = Figure()\n",
|
515 |
+
"ax = fig.add_subplot(1, 1, 1)\n",
|
516 |
+
"ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')\n",
|
517 |
+
"ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')\n",
|
518 |
+
"ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')\n",
|
519 |
+
"ax.legend(loc=\"lower right\")\n",
|
520 |
+
"ax.grid()"
|
521 |
+
]
|
522 |
+
},
|
523 |
{
|
524 |
"cell_type": "code",
|
525 |
"execution_count": null,
|
526 |
+
"id": "6eb3dece-5b33-4223-af9a-6b999bb2305b",
|
527 |
"metadata": {},
|
528 |
"outputs": [],
|
529 |
"source": []
|
plot.png
CHANGED
result.txt
CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
-
time_taken_from_start:
|
7 |
auc_score: 0.7457100293916334
|
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
+
time_taken_from_start: 25.420082330703735
|
7 |
auc_score: 0.7457100293916334
|