Spaces:
Running
Running
File size: 19,876 Bytes
5c72fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import argparse
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
from src.bert import BERT
from src.pretrainer import BERTTrainer, BERTFineTuneTrainer, BERTAttention
from src.dataset import PretrainerDataset, TokenizerDataset
from src.vocab import Vocab
import time
import os
import tqdm
import pickle
def train():
parser = argparse.ArgumentParser()
parser.add_argument('-workspace_name', type=str, default=None)
parser.add_argument('-code', type=str, default=None, help="folder for pretraining outputs and logs")
parser.add_argument('-finetune_task', type=str, default=None, help="folder inside finetuning")
parser.add_argument("-attention", type=bool, default=False, help="analyse attention scores")
parser.add_argument("-diff_test_folder", type=bool, default=False, help="use for different test folder")
parser.add_argument("-embeddings", type=bool, default=False, help="get and analyse embeddings")
parser.add_argument('-embeddings_file_name', type=str, default=None, help="file name of embeddings")
parser.add_argument("-pretrain", type=bool, default=False, help="pretraining: true, or false")
# parser.add_argument('-opts', nargs='+', type=str, default=None, help='List of optional steps')
parser.add_argument("-max_mask", type=int, default=0.15, help="% of input tokens selected for masking")
# parser.add_argument("-p", "--pretrain_dataset", type=str, default="pretraining/pretrain.txt", help="pretraining dataset for bert")
# parser.add_argument("-pv", "--pretrain_val_dataset", type=str, default="pretraining/test.txt", help="pretraining validation dataset for bert")
# default="finetuning/test.txt",
parser.add_argument("-vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab")
parser.add_argument("-train_dataset_path", type=str, default="train.txt", help="fine tune train dataset for progress classifier")
parser.add_argument("-val_dataset_path", type=str, default="val.txt", help="test set for evaluate fine tune train set")
parser.add_argument("-test_dataset_path", type=str, default="test.txt", help="test set for evaluate fine tune train set")
parser.add_argument("-num_labels", type=int, default=2, help="Number of labels")
parser.add_argument("-train_label_path", type=str, default="train_label.txt", help="fine tune train dataset for progress classifier")
parser.add_argument("-val_label_path", type=str, default="val_label.txt", help="test set for evaluate fine tune train set")
parser.add_argument("-test_label_path", type=str, default="test_label.txt", help="test set for evaluate fine tune train set")
##### change Checkpoint for finetuning
parser.add_argument("-pretrained_bert_checkpoint", type=str, default=None, help="checkpoint of saved pretrained bert model") #."output_feb09/bert_trained.model.ep40"
parser.add_argument('-check_epoch', type=int, default=None)
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") #64
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") #4
parser.add_argument("-a", "--attn_heads", type=int, default=4, help="number of attention heads") #8
parser.add_argument("-s", "--seq_len", type=int, default=50, help="maximum sequence length")
parser.add_argument("-b", "--batch_size", type=int, default=500, help="number of batch_size") #64
parser.add_argument("-e", "--epochs", type=int, default=50)#1501, help="number of epochs") #501
# Use 50 for pretrain, and 10 for fine tune
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size")
# Later run with cuda
parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false")
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n")
# parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus")
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids")
# parser.add_argument("--on_memory", type=bool, default=False, help="Loading on memory: true or false")
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network")
parser.add_argument("--lr", type=float, default=1e-05, help="learning rate of adam") #1e-3
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value")
parser.add_argument("--adam_beta2", type=float, default=0.98, help="adam first beta value") #0.999
parser.add_argument("-o", "--output_path", type=str, default="bert_trained.seq_encoder.model", help="ex)output/bert.model")
# parser.add_argument("-o", "--output_path", type=str, default="output/bert_fine_tuned.model", help="ex)output/bert.model")
args = parser.parse_args()
for k,v in vars(args).items():
if 'path' in k:
if v:
if k == "output_path":
if args.code:
setattr(args, f"{k}", args.workspace_name+f"/output/{args.code}/"+v)
elif args.finetune_task:
setattr(args, f"{k}", args.workspace_name+f"/output/{args.finetune_task}/"+v)
else:
setattr(args, f"{k}", args.workspace_name+"/output/"+v)
elif k != "vocab_path":
if args.pretrain:
setattr(args, f"{k}", args.workspace_name+"/pretraining/"+v)
else:
if args.code:
setattr(args, f"{k}", args.workspace_name+f"/{args.code}/"+v)
elif args.finetune_task:
if args.diff_test_folder and "test" in k:
setattr(args, f"{k}", args.workspace_name+f"/finetuning/"+v)
else:
setattr(args, f"{k}", args.workspace_name+f"/finetuning/{args.finetune_task}/"+v)
else:
setattr(args, f"{k}", args.workspace_name+"/finetuning/"+v)
else:
setattr(args, f"{k}", args.workspace_name+"/"+v)
print(f"args.{k} : {getattr(args, f'{k}')}")
print("Loading Vocab", args.vocab_path)
vocab_obj = Vocab(args.vocab_path)
vocab_obj.load_vocab()
print("Vocab Size: ", len(vocab_obj.vocab))
if args.attention:
print(f"Attention aggregate...... code: {args.code}, dataset: {args.finetune_task}")
if args.code:
new_folder = f"{args.workspace_name}/plots/{args.code}/"
if not os.path.exists(new_folder):
os.makedirs(new_folder)
train_dataset = TokenizerDataset(args.train_dataset_path, None, vocab_obj, seq_len=args.seq_len)
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
print("Load Pre-trained BERT model")
cuda_condition = torch.cuda.is_available() and args.with_cuda
device = torch.device("cuda:0" if cuda_condition else "cpu")
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device)
trainer = BERTAttention(bert, vocab_obj, train_dataloader = train_data_loader, workspace_name = args.workspace_name, code=args.code, finetune_task = args.finetune_task)
trainer.getAttention()
elif args.embeddings:
print("Get embeddings... and cluster... ")
train_dataset = TokenizerDataset(args.test_dataset_path, None, vocab_obj, seq_len=args.seq_len)
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
print("Load Pre-trained BERT model")
cuda_condition = torch.cuda.is_available() and args.with_cuda
device = torch.device("cuda:0" if cuda_condition else "cpu")
bert = torch.load(args.pretrained_bert_checkpoint).to(device)
available_gpus = list(range(torch.cuda.device_count()))
if torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
bert = nn.DataParallel(bert, device_ids=available_gpus)
data_iter = tqdm.tqdm(enumerate(train_data_loader),
desc="Model: %s" % (args.pretrained_bert_checkpoint.split("/")[-1]),
total=len(train_data_loader), bar_format="{l_bar}{r_bar}")
all_embeddings = []
for i, data in data_iter:
data = {key: value.to(device) for key, value in data.items()}
embedding = bert(data["input"], data["segment_label"])
# print(embedding.shape, embedding[:, 0].shape)
embeddings = [h for h in embedding[:,0].cpu().detach().numpy()]
all_embeddings.extend(embeddings)
new_emb_folder = f"{args.workspace_name}/embeddings"
if not os.path.exists(new_emb_folder):
os.makedirs(new_emb_folder)
pickle.dump(all_embeddings, open(f"{new_emb_folder}/{args.embeddings_file_name}.pkl", "wb"))
else:
if args.pretrain:
print("Pre-training......")
print("Loading Pretraining Train Dataset", args.train_dataset_path)
print(f"Workspace: {args.workspace_name}")
pretrain_dataset = PretrainerDataset(args.train_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask)
print("Loading Pretraining Validation Dataset", args.val_dataset_path)
pretrain_valid_dataset = PretrainerDataset(args.val_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask) \
if args.val_dataset_path is not None else None
print("Loading Pretraining Test Dataset", args.test_dataset_path)
pretrain_test_dataset = PretrainerDataset(args.test_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask) \
if args.test_dataset_path is not None else None
print("Creating Dataloader")
pretrain_data_loader = DataLoader(pretrain_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
pretrain_val_data_loader = DataLoader(pretrain_valid_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\
if pretrain_valid_dataset is not None else None
pretrain_test_data_loader = DataLoader(pretrain_test_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\
if pretrain_test_dataset is not None else None
print("Building BERT model")
bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads, dropout=args.dropout)
if args.pretrained_bert_checkpoint:
print(f"BERT model : {args.pretrained_bert_checkpoint}")
bert = torch.load(args.pretrained_bert_checkpoint)
new_log_folder = f"{args.workspace_name}/logs"
new_output_folder = f"{args.workspace_name}/output"
if args.code: # is sent almost all the time
new_log_folder = f"{args.workspace_name}/logs/{args.code}"
new_output_folder = f"{args.workspace_name}/output/{args.code}"
if not os.path.exists(new_log_folder):
os.makedirs(new_log_folder)
if not os.path.exists(new_output_folder):
os.makedirs(new_output_folder)
print(f"Creating BERT Trainer .... masking: True, max_mask: {args.max_mask}")
trainer = BERTTrainer(bert, len(vocab_obj.vocab), train_dataloader=pretrain_data_loader,
val_dataloader=pretrain_val_data_loader, test_dataloader=pretrain_test_data_loader,
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq,
log_folder_path=new_log_folder)
start_time = time.time()
print(f'Pretraining Starts, Time: {time.strftime("%D %T", time.localtime(start_time))}')
# if need to pretrain from a check-point, need :check_epoch
repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs)
counter = 0
patience = 20
for epoch in repoch:
print(f'Training Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
trainer.train(epoch)
print(f'Training Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
if pretrain_val_data_loader is not None:
print(f'Validation Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
trainer.val(epoch)
print(f'Validation Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
if trainer.save_model: # or epoch%10 == 0 and epoch > 4
trainer.save(epoch, args.output_path)
counter = 0
if pretrain_test_data_loader is not None:
print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
trainer.test(epoch)
print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
else:
counter +=1
if counter >= patience:
print(f"Early stopping at epoch {epoch}")
break
end_time = time.time()
print("Time Taken to pretrain model = ", end_time - start_time)
print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}')
else:
print("Fine Tuning......")
print("Loading Train Dataset", args.train_dataset_path)
train_dataset = TokenizerDataset(args.train_dataset_path, args.train_label_path, vocab_obj, seq_len=args.seq_len)
# print("Loading Validation Dataset", args.val_dataset_path)
# val_dataset = TokenizerDataset(args.val_dataset_path, args.val_label_path, vocab_obj, seq_len=args.seq_len) \
# if args.val_dataset_path is not None else None
print("Loading Test Dataset", args.test_dataset_path)
test_dataset = TokenizerDataset(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len) \
if args.test_dataset_path is not None else None
print("Creating Dataloader...")
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
# val_data_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \
# if val_dataset is not None else None
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \
if test_dataset is not None else None
print("Load Pre-trained BERT model")
# bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads)
cuda_condition = torch.cuda.is_available() and args.with_cuda
device = torch.device("cuda:0" if cuda_condition else "cpu")
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device)
# if args.finetune_task == "SL":
# if args.workspace_name == "ratio_proportion_change4":
# num_labels = 9
# elif args.workspace_name == "ratio_proportion_change3":
# num_labels = 9
# elif args.workspace_name == "scale_drawings_3":
# num_labels = 9
# elif args.workspace_name == "sales_tax_discounts_two_rates":
# num_labels = 3
# else:
# num_labels = 2
# # num_labels = 1
# print(f"Number of Labels : {args.num_labels}")
new_log_folder = f"{args.workspace_name}/logs"
new_output_folder = f"{args.workspace_name}/output"
if args.finetune_task: # is sent almost all the time
new_log_folder = f"{args.workspace_name}/logs/{args.finetune_task}"
new_output_folder = f"{args.workspace_name}/output/{args.finetune_task}"
if not os.path.exists(new_log_folder):
os.makedirs(new_log_folder)
if not os.path.exists(new_output_folder):
os.makedirs(new_output_folder)
print("Creating BERT Fine Tune Trainer")
trainer = BERTFineTuneTrainer(bert, len(vocab_obj.vocab),
train_dataloader=train_data_loader, test_dataloader=test_data_loader,
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq,
workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder)
print("Fine-tune training Start....")
start_time = time.time()
repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs)
counter = 0
patience = 10
for epoch in repoch:
print(f'Training Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
trainer.train(epoch)
print(f'Training Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
if test_data_loader is not None:
print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
trainer.test(epoch)
# pickle.dump(trainer.probability_list, open(f"{args.workspace_name}/output/aaai/change4_mid_prob_{epoch}.pkl","wb"))
print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
# if val_data_loader is not None:
# print(f'Validation Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
# trainer.val(epoch)
# print(f'Validation Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
if trainer.save_model: # or epoch%10 == 0
trainer.save(epoch, args.output_path)
counter = 0
else:
counter +=1
if counter >= patience:
print(f"Early stopping at epoch {epoch}")
break
end_time = time.time()
print("Time Taken to fine-tune model = ", end_time - start_time)
print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}')
if __name__ == "__main__":
train() |