--- title: English Tamil emoji: 🐢 colorFrom: green colorTo: gray sdk: gradio sdk_version: 4.23.0 app_file: app.py pinned: false license: mit --- ### Model Information Training Details - **This model has been fine-tuned for English to Tamil translation.** - **Training Duration: Over 10 hours** - **Loss Achieved: 0.6** - **Model Architecture** - **The model architecture is based on the Transformer architecture, specifically optimized for sequence-to-sequence tasks.** ## Inference 1. **How to use the model in our notebook**: ```python # Load model directly import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM checkpoint = "suriya7/English-to-Tamil" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) def language_translator(text): tokenized = tokenizer([text], return_tensors='pt') out = model.generate(**tokenized, max_length=128) return tokenizer.decode(out[0],skip_special_tokens=True) text_to_translate = "hardwork never fail" output = language_translator(text_to_translate) print(output) ``` Check out the configuration reference at https://huggingface.co./docs/hub/spaces-config-reference