Spaces:
Running
Running
Jun Xiong
commited on
Commit
·
1bd7ddc
1
Parent(s):
a7df02b
web
Browse files
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: Segment
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
models:
|
9 |
-
- Xenova/
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Segment Anything Web
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
models:
|
9 |
+
- Xenova/slimsam-77-uniform
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
index.css
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* {
|
2 |
+
box-sizing: border-box;
|
3 |
+
padding: 0;
|
4 |
+
margin: 0;
|
5 |
+
font-family: sans-serif;
|
6 |
+
}
|
7 |
+
|
8 |
+
html,
|
9 |
+
body {
|
10 |
+
height: 100%;
|
11 |
+
}
|
12 |
+
|
13 |
+
body {
|
14 |
+
padding: 16px 32px;
|
15 |
+
}
|
16 |
+
|
17 |
+
body,
|
18 |
+
#container,
|
19 |
+
#upload-button {
|
20 |
+
display: flex;
|
21 |
+
flex-direction: column;
|
22 |
+
justify-content: center;
|
23 |
+
align-items: center;
|
24 |
+
}
|
25 |
+
|
26 |
+
h1 {
|
27 |
+
text-align: center;
|
28 |
+
}
|
29 |
+
|
30 |
+
#container {
|
31 |
+
position: relative;
|
32 |
+
width: 640px;
|
33 |
+
height: 420px;
|
34 |
+
max-width: 100%;
|
35 |
+
max-height: 100%;
|
36 |
+
border: 2px dashed #D1D5DB;
|
37 |
+
border-radius: 0.75rem;
|
38 |
+
overflow: hidden;
|
39 |
+
cursor: pointer;
|
40 |
+
margin-top: 1rem;
|
41 |
+
background-size: 100% 100%;
|
42 |
+
background-position: center;
|
43 |
+
background-repeat: no-repeat;
|
44 |
+
}
|
45 |
+
|
46 |
+
#mask-output {
|
47 |
+
position: absolute;
|
48 |
+
width: 100%;
|
49 |
+
height: 100%;
|
50 |
+
pointer-events: none;
|
51 |
+
}
|
52 |
+
|
53 |
+
#upload-button {
|
54 |
+
gap: 0.4rem;
|
55 |
+
font-size: 18px;
|
56 |
+
cursor: pointer;
|
57 |
+
}
|
58 |
+
|
59 |
+
#upload {
|
60 |
+
display: none;
|
61 |
+
}
|
62 |
+
|
63 |
+
svg {
|
64 |
+
pointer-events: none;
|
65 |
+
}
|
66 |
+
|
67 |
+
#example {
|
68 |
+
font-size: 14px;
|
69 |
+
text-decoration: underline;
|
70 |
+
cursor: pointer;
|
71 |
+
}
|
72 |
+
|
73 |
+
#example:hover {
|
74 |
+
color: #2563EB;
|
75 |
+
}
|
76 |
+
|
77 |
+
canvas {
|
78 |
+
position: absolute;
|
79 |
+
width: 100%;
|
80 |
+
height: 100%;
|
81 |
+
opacity: 0.6;
|
82 |
+
}
|
83 |
+
|
84 |
+
#status {
|
85 |
+
min-height: 16px;
|
86 |
+
margin: 8px 0;
|
87 |
+
}
|
88 |
+
|
89 |
+
.icon {
|
90 |
+
height: 16px;
|
91 |
+
width: 16px;
|
92 |
+
position: absolute;
|
93 |
+
transform: translate(-50%, -50%);
|
94 |
+
}
|
95 |
+
|
96 |
+
#controls>button {
|
97 |
+
padding: 6px 12px;
|
98 |
+
background-color: #3498db;
|
99 |
+
color: white;
|
100 |
+
border: 1px solid #2980b9;
|
101 |
+
border-radius: 5px;
|
102 |
+
cursor: pointer;
|
103 |
+
font-size: 16px;
|
104 |
+
}
|
105 |
+
|
106 |
+
#controls>button:disabled {
|
107 |
+
background-color: #d1d5db;
|
108 |
+
color: #6b7280;
|
109 |
+
border: 1px solid #9ca3af;
|
110 |
+
cursor: not-allowed;
|
111 |
+
}
|
112 |
+
|
113 |
+
#information {
|
114 |
+
margin-top: 0.25rem;
|
115 |
+
font-size: 15px;
|
116 |
+
}
|
index.html
CHANGED
@@ -3,24 +3,35 @@
|
|
3 |
|
4 |
<head>
|
5 |
<meta charset="UTF-8" />
|
6 |
-
<link rel="stylesheet" href="
|
7 |
|
8 |
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9 |
-
<title>Transformers.js -
|
10 |
</head>
|
11 |
|
12 |
<body>
|
13 |
-
<h1>
|
14 |
-
<
|
15 |
-
<
|
16 |
-
<
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
<input id="upload" type="file" accept="image/*" />
|
25 |
|
26 |
<script src="index.js" type="module"></script>
|
|
|
3 |
|
4 |
<head>
|
5 |
<meta charset="UTF-8" />
|
6 |
+
<link rel="stylesheet" href="index.css" />
|
7 |
|
8 |
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9 |
+
<title>Transformers.js - Segment Anything</title>
|
10 |
</head>
|
11 |
|
12 |
<body>
|
13 |
+
<h1>Segment Anything w/ 🤗 Transformers.js</h1>
|
14 |
+
<div id="container">
|
15 |
+
<label id="upload-button" for="upload">
|
16 |
+
<svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg">
|
17 |
+
<path fill="#000"
|
18 |
+
d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z">
|
19 |
+
</path>
|
20 |
+
</svg>
|
21 |
+
Click to upload image
|
22 |
+
<label id="example">(or try example)</label>
|
23 |
+
</label>
|
24 |
+
<canvas id="mask-output"></canvas>
|
25 |
+
</div>
|
26 |
+
<label id="status"></label>
|
27 |
+
<div id="controls">
|
28 |
+
<button id="reset-image">Reset image</button>
|
29 |
+
<button id="clear-points">Clear points</button>
|
30 |
+
<button id="cut-mask" disabled>Cut mask</button>
|
31 |
+
</div>
|
32 |
+
<p id="information">
|
33 |
+
Left click = positive points, right click = negative points.
|
34 |
+
</p>
|
35 |
<input id="upload" type="file" accept="image/*" />
|
36 |
|
37 |
<script src="index.js" type="module"></script>
|
index.js
CHANGED
@@ -1,26 +1,165 @@
|
|
1 |
-
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
|
2 |
|
3 |
-
//
|
4 |
-
|
5 |
-
|
6 |
-
// Reference the elements that we will need
|
7 |
-
const status = document.getElementById('status');
|
8 |
const fileUpload = document.getElementById('upload');
|
9 |
const imageContainer = document.getElementById('container');
|
10 |
const example = document.getElementById('example');
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
//
|
15 |
-
|
16 |
-
const
|
17 |
-
status.textContent = 'Ready';
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
});
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
fileUpload.addEventListener('change', function (e) {
|
25 |
const file = e.target.files[0];
|
26 |
if (!file) {
|
@@ -30,50 +169,127 @@ fileUpload.addEventListener('change', function (e) {
|
|
30 |
const reader = new FileReader();
|
31 |
|
32 |
// Set up a callback when the file is loaded
|
33 |
-
reader.onload = e2 =>
|
34 |
|
35 |
reader.readAsDataURL(file);
|
36 |
});
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
const
|
56 |
-
|
57 |
-
//
|
58 |
-
const
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
width: 100 * (xmax - xmin) + '%',
|
68 |
-
height: 100 * (ymax - ymin) + '%',
|
69 |
-
})
|
70 |
-
|
71 |
-
// Draw label
|
72 |
-
const labelElement = document.createElement('span');
|
73 |
-
labelElement.textContent = label;
|
74 |
-
labelElement.className = 'bounding-box-label';
|
75 |
-
labelElement.style.backgroundColor = color;
|
76 |
-
|
77 |
-
boxElement.appendChild(labelElement);
|
78 |
-
imageContainer.appendChild(boxElement);
|
79 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
// Reference the elements we will use
|
3 |
+
const statusLabel = document.getElementById('status');
|
|
|
|
|
|
|
4 |
const fileUpload = document.getElementById('upload');
|
5 |
const imageContainer = document.getElementById('container');
|
6 |
const example = document.getElementById('example');
|
7 |
+
const maskCanvas = document.getElementById('mask-output');
|
8 |
+
const uploadButton = document.getElementById('upload-button');
|
9 |
+
const resetButton = document.getElementById('reset-image');
|
10 |
+
const clearButton = document.getElementById('clear-points');
|
11 |
+
const cutButton = document.getElementById('cut-mask');
|
12 |
|
13 |
+
// State variables
|
14 |
+
let lastPoints = null;
|
15 |
+
let isEncoded = false;
|
16 |
+
let isDecoding = false;
|
17 |
+
let isMultiMaskMode = false;
|
18 |
+
let modelReady = false;
|
19 |
+
let imageDataURI = null;
|
20 |
|
21 |
+
// Constants
|
22 |
+
const BASE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/';
|
23 |
+
const EXAMPLE_URL = BASE_URL + 'corgi.jpg';
|
|
|
24 |
|
25 |
+
// Create a web worker so that the main (UI) thread is not blocked during inference.
|
26 |
+
const worker = new Worker('worker.js', {
|
27 |
+
type: 'module',
|
28 |
+
});
|
29 |
+
|
30 |
+
// Preload star and cross images to avoid lag on first click
|
31 |
+
const star = new Image();
|
32 |
+
star.src = BASE_URL + 'star-icon.png';
|
33 |
+
star.className = 'icon';
|
34 |
+
|
35 |
+
const cross = new Image();
|
36 |
+
cross.src = BASE_URL + 'cross-icon.png';
|
37 |
+
cross.className = 'icon';
|
38 |
+
|
39 |
+
// Set up message handler
|
40 |
+
worker.addEventListener('message', (e) => {
|
41 |
+
const { type, data } = e.data;
|
42 |
+
if (type === 'ready') {
|
43 |
+
modelReady = true;
|
44 |
+
statusLabel.textContent = 'Ready';
|
45 |
+
|
46 |
+
} else if (type === 'decode_result') {
|
47 |
+
isDecoding = false;
|
48 |
+
|
49 |
+
if (!isEncoded) {
|
50 |
+
return; // We are not ready to decode yet
|
51 |
+
}
|
52 |
+
|
53 |
+
if (!isMultiMaskMode && lastPoints) {
|
54 |
+
// Perform decoding with the last point
|
55 |
+
decode();
|
56 |
+
lastPoints = null;
|
57 |
+
}
|
58 |
+
|
59 |
+
const { mask, scores } = data;
|
60 |
+
|
61 |
+
// Update canvas dimensions (if different)
|
62 |
+
if (maskCanvas.width !== mask.width || maskCanvas.height !== mask.height) {
|
63 |
+
maskCanvas.width = mask.width;
|
64 |
+
maskCanvas.height = mask.height;
|
65 |
+
}
|
66 |
+
|
67 |
+
// Create context and allocate buffer for pixel data
|
68 |
+
const context = maskCanvas.getContext('2d');
|
69 |
+
const imageData = context.createImageData(maskCanvas.width, maskCanvas.height);
|
70 |
+
|
71 |
+
// Select best mask
|
72 |
+
const numMasks = scores.length; // 3
|
73 |
+
let bestIndex = 0;
|
74 |
+
for (let i = 1; i < numMasks; ++i) {
|
75 |
+
if (scores[i] > scores[bestIndex]) {
|
76 |
+
bestIndex = i;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
statusLabel.textContent = `Segment score: ${scores[bestIndex].toFixed(2)}`;
|
80 |
+
|
81 |
+
// Fill mask with colour
|
82 |
+
const pixelData = imageData.data;
|
83 |
+
for (let i = 0; i < pixelData.length; ++i) {
|
84 |
+
if (mask.data[numMasks * i + bestIndex] === 1) {
|
85 |
+
const offset = 4 * i;
|
86 |
+
pixelData[offset] = 0; // red
|
87 |
+
pixelData[offset + 1] = 114; // green
|
88 |
+
pixelData[offset + 2] = 189; // blue
|
89 |
+
pixelData[offset + 3] = 255; // alpha
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
// Draw image data to context
|
94 |
+
context.putImageData(imageData, 0, 0);
|
95 |
+
|
96 |
+
} else if (type === 'segment_result') {
|
97 |
+
if (data === 'start') {
|
98 |
+
statusLabel.textContent = 'Extracting image embedding...';
|
99 |
+
} else {
|
100 |
+
statusLabel.textContent = 'Embedding extracted!';
|
101 |
+
isEncoded = true;
|
102 |
+
}
|
103 |
+
}
|
104 |
});
|
105 |
|
106 |
+
function decode() {
|
107 |
+
isDecoding = true;
|
108 |
+
worker.postMessage({ type: 'decode', data: lastPoints });
|
109 |
+
}
|
110 |
+
|
111 |
+
function clearPointsAndMask() {
|
112 |
+
// Reset state
|
113 |
+
isMultiMaskMode = false;
|
114 |
+
lastPoints = null;
|
115 |
+
|
116 |
+
// Remove points from previous mask (if any)
|
117 |
+
document.querySelectorAll('.icon').forEach(e => e.remove());
|
118 |
+
|
119 |
+
// Disable cut button
|
120 |
+
cutButton.disabled = true;
|
121 |
+
|
122 |
+
// Reset mask canvas
|
123 |
+
maskCanvas.getContext('2d').clearRect(0, 0, maskCanvas.width, maskCanvas.height);
|
124 |
+
}
|
125 |
+
clearButton.addEventListener('click', clearPointsAndMask);
|
126 |
+
|
127 |
+
resetButton.addEventListener('click', () => {
|
128 |
+
// Update state
|
129 |
+
isEncoded = false;
|
130 |
+
imageDataURI = null;
|
131 |
+
|
132 |
+
// Indicate to worker that we have reset the state
|
133 |
+
worker.postMessage({ type: 'reset' });
|
134 |
+
|
135 |
+
// Clear points and mask (if present)
|
136 |
+
clearPointsAndMask();
|
137 |
+
|
138 |
+
// Update UI
|
139 |
+
cutButton.disabled = true;
|
140 |
+
imageContainer.style.backgroundImage = 'none';
|
141 |
+
uploadButton.style.display = 'flex';
|
142 |
+
statusLabel.textContent = 'Ready';
|
143 |
+
});
|
144 |
+
|
145 |
+
function segment(data) {
|
146 |
+
// Update state
|
147 |
+
isEncoded = false;
|
148 |
+
if (!modelReady) {
|
149 |
+
statusLabel.textContent = 'Loading model...';
|
150 |
+
}
|
151 |
+
imageDataURI = data;
|
152 |
+
|
153 |
+
// Update UI
|
154 |
+
imageContainer.style.backgroundImage = `url(${data})`;
|
155 |
+
uploadButton.style.display = 'none';
|
156 |
+
cutButton.disabled = true;
|
157 |
+
|
158 |
+
// Instruct worker to segment the image
|
159 |
+
worker.postMessage({ type: 'segment', data });
|
160 |
+
}
|
161 |
+
|
162 |
+
// Handle file selection
|
163 |
fileUpload.addEventListener('change', function (e) {
|
164 |
const file = e.target.files[0];
|
165 |
if (!file) {
|
|
|
169 |
const reader = new FileReader();
|
170 |
|
171 |
// Set up a callback when the file is loaded
|
172 |
+
reader.onload = e2 => segment(e2.target.result);
|
173 |
|
174 |
reader.readAsDataURL(file);
|
175 |
});
|
176 |
|
177 |
+
example.addEventListener('click', (e) => {
|
178 |
+
e.preventDefault();
|
179 |
+
segment(EXAMPLE_URL);
|
180 |
+
});
|
181 |
|
182 |
+
function addIcon({ point, label }) {
|
183 |
+
const icon = (label === 1 ? star : cross).cloneNode();
|
184 |
+
icon.style.left = `${point[0] * 100}%`;
|
185 |
+
icon.style.top = `${point[1] * 100}%`;
|
186 |
+
imageContainer.appendChild(icon);
|
187 |
+
}
|
188 |
+
|
189 |
+
// Attach hover event to image container
|
190 |
+
imageContainer.addEventListener('mousedown', e => {
|
191 |
+
if (e.button !== 0 && e.button !== 2) {
|
192 |
+
return; // Ignore other buttons
|
193 |
+
}
|
194 |
+
if (!isEncoded) {
|
195 |
+
return; // Ignore if not encoded yet
|
196 |
+
}
|
197 |
+
if (!isMultiMaskMode) {
|
198 |
+
lastPoints = [];
|
199 |
+
isMultiMaskMode = true;
|
200 |
+
cutButton.disabled = false;
|
201 |
+
}
|
202 |
|
203 |
+
const point = getPoint(e);
|
204 |
+
lastPoints.push(point);
|
205 |
+
|
206 |
+
// add icon
|
207 |
+
addIcon(point);
|
208 |
+
|
209 |
+
decode();
|
210 |
+
});
|
211 |
+
|
212 |
+
|
213 |
+
// Clamp a value inside a range [min, max]
|
214 |
+
function clamp(x, min = 0, max = 1) {
|
215 |
+
return Math.max(Math.min(x, max), min)
|
216 |
}
|
217 |
|
218 |
+
function getPoint(e) {
|
219 |
+
// Get bounding box
|
220 |
+
const bb = imageContainer.getBoundingClientRect();
|
221 |
+
|
222 |
+
// Get the mouse coordinates relative to the container
|
223 |
+
const mouseX = clamp((e.clientX - bb.left) / bb.width);
|
224 |
+
const mouseY = clamp((e.clientY - bb.top) / bb.height);
|
225 |
+
|
226 |
+
return {
|
227 |
+
point: [mouseX, mouseY],
|
228 |
+
label: e.button === 2 // right click
|
229 |
+
? 0 // negative prompt
|
230 |
+
: 1, // positive prompt
|
231 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
}
|
233 |
+
|
234 |
+
// Do not show context menu on right click
|
235 |
+
imageContainer.addEventListener('contextmenu', e => {
|
236 |
+
e.preventDefault();
|
237 |
+
});
|
238 |
+
|
239 |
+
// Attach hover event to image container
|
240 |
+
imageContainer.addEventListener('mousemove', e => {
|
241 |
+
if (!isEncoded || isMultiMaskMode) {
|
242 |
+
// Ignore mousemove events if the image is not encoded yet,
|
243 |
+
// or we are in multi-mask mode
|
244 |
+
return;
|
245 |
+
}
|
246 |
+
lastPoints = [getPoint(e)];
|
247 |
+
|
248 |
+
if (!isDecoding) {
|
249 |
+
decode(); // Only decode if we are not already decoding
|
250 |
+
}
|
251 |
+
});
|
252 |
+
|
253 |
+
// Handle cut button click
|
254 |
+
cutButton.addEventListener('click', () => {
|
255 |
+
const [w, h] = [maskCanvas.width, maskCanvas.height];
|
256 |
+
|
257 |
+
// Get the mask pixel data
|
258 |
+
const maskContext = maskCanvas.getContext('2d');
|
259 |
+
const maskPixelData = maskContext.getImageData(0, 0, w, h);
|
260 |
+
|
261 |
+
// Load the image
|
262 |
+
const image = new Image();
|
263 |
+
image.crossOrigin = 'anonymous';
|
264 |
+
image.onload = async () => {
|
265 |
+
// Create a new canvas to hold the image
|
266 |
+
const imageCanvas = new OffscreenCanvas(w, h);
|
267 |
+
const imageContext = imageCanvas.getContext('2d');
|
268 |
+
imageContext.drawImage(image, 0, 0, w, h);
|
269 |
+
const imagePixelData = imageContext.getImageData(0, 0, w, h);
|
270 |
+
|
271 |
+
// Create a new canvas to hold the cut-out
|
272 |
+
const cutCanvas = new OffscreenCanvas(w, h);
|
273 |
+
const cutContext = cutCanvas.getContext('2d');
|
274 |
+
const cutPixelData = cutContext.getImageData(0, 0, w, h);
|
275 |
+
|
276 |
+
// Copy the image pixel data to the cut canvas
|
277 |
+
for (let i = 3; i < maskPixelData.data.length; i += 4) {
|
278 |
+
if (maskPixelData.data[i] > 0) {
|
279 |
+
for (let j = 0; j < 4; ++j) {
|
280 |
+
const offset = i - j;
|
281 |
+
cutPixelData.data[offset] = imagePixelData.data[offset];
|
282 |
+
}
|
283 |
+
}
|
284 |
+
}
|
285 |
+
cutContext.putImageData(cutPixelData, 0, 0);
|
286 |
+
|
287 |
+
// Download image
|
288 |
+
const link = document.createElement('a');
|
289 |
+
link.download = 'image.png';
|
290 |
+
link.href = URL.createObjectURL(await cutCanvas.convertToBlob());
|
291 |
+
link.click();
|
292 |
+
link.remove();
|
293 |
+
}
|
294 |
+
image.src = imageDataURI;
|
295 |
+
});
|
style.css
CHANGED
@@ -1,76 +1,28 @@
|
|
1 |
-
* {
|
2 |
-
box-sizing: border-box;
|
3 |
-
padding: 0;
|
4 |
-
margin: 0;
|
5 |
-
font-family: sans-serif;
|
6 |
-
}
|
7 |
-
|
8 |
-
html,
|
9 |
-
body {
|
10 |
-
height: 100%;
|
11 |
-
}
|
12 |
-
|
13 |
body {
|
14 |
-
|
|
|
15 |
}
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
flex-direction: column;
|
21 |
-
justify-content: center;
|
22 |
-
align-items: center;
|
23 |
}
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
height: 640px;
|
31 |
-
max-width: 100%;
|
32 |
-
max-height: 100%;
|
33 |
-
|
34 |
-
border: 2px dashed #D1D5DB;
|
35 |
-
border-radius: 0.75rem;
|
36 |
-
overflow: hidden;
|
37 |
-
cursor: pointer;
|
38 |
-
margin: 1rem;
|
39 |
-
|
40 |
-
background-size: 100% 100%;
|
41 |
-
background-position: center;
|
42 |
-
background-repeat: no-repeat;
|
43 |
-
font-size: 18px;
|
44 |
}
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
-
|
51 |
-
|
52 |
}
|
53 |
-
|
54 |
-
#example {
|
55 |
-
font-size: 14px;
|
56 |
-
text-decoration: underline;
|
57 |
-
cursor: pointer;
|
58 |
-
}
|
59 |
-
|
60 |
-
#example:hover {
|
61 |
-
color: #2563EB;
|
62 |
-
}
|
63 |
-
|
64 |
-
.bounding-box {
|
65 |
-
position: absolute;
|
66 |
-
box-sizing: border-box;
|
67 |
-
border: solid 2px;
|
68 |
-
}
|
69 |
-
|
70 |
-
.bounding-box-label {
|
71 |
-
color: white;
|
72 |
-
position: absolute;
|
73 |
-
font-size: 12px;
|
74 |
-
margin: -16px 0 0 -2px;
|
75 |
-
padding: 1px;
|
76 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
body {
|
2 |
+
padding: 2rem;
|
3 |
+
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
4 |
}
|
5 |
|
6 |
+
h1 {
|
7 |
+
font-size: 16px;
|
8 |
+
margin-top: 0;
|
|
|
|
|
|
|
9 |
}
|
10 |
|
11 |
+
p {
|
12 |
+
color: rgb(107, 114, 128);
|
13 |
+
font-size: 15px;
|
14 |
+
margin-bottom: 10px;
|
15 |
+
margin-top: 5px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
17 |
|
18 |
+
.card {
|
19 |
+
max-width: 620px;
|
20 |
+
margin: 0 auto;
|
21 |
+
padding: 16px;
|
22 |
+
border: 1px solid lightgray;
|
23 |
+
border-radius: 16px;
|
24 |
}
|
25 |
|
26 |
+
.card p:last-child {
|
27 |
+
margin-bottom: 0;
|
28 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
worker.js
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { env, SamModel, AutoProcessor, RawImage, Tensor } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
|
2 |
+
|
3 |
+
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
|
4 |
+
env.allowLocalModels = false;
|
5 |
+
|
6 |
+
// We adopt the singleton pattern to enable lazy-loading of the model and processor.
|
7 |
+
export class SegmentAnythingSingleton {
|
8 |
+
static model_id = 'Xenova/slimsam-77-uniform';
|
9 |
+
static model;
|
10 |
+
static processor;
|
11 |
+
static quantized = true;
|
12 |
+
|
13 |
+
static getInstance() {
|
14 |
+
if (!this.model) {
|
15 |
+
this.model = SamModel.from_pretrained(this.model_id, {
|
16 |
+
quantized: this.quantized,
|
17 |
+
});
|
18 |
+
}
|
19 |
+
if (!this.processor) {
|
20 |
+
this.processor = AutoProcessor.from_pretrained(this.model_id);
|
21 |
+
}
|
22 |
+
|
23 |
+
return Promise.all([this.model, this.processor]);
|
24 |
+
}
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
// State variables
|
29 |
+
let image_embeddings = null;
|
30 |
+
let image_inputs = null;
|
31 |
+
let ready = false;
|
32 |
+
|
33 |
+
self.onmessage = async (e) => {
|
34 |
+
const [model, processor] = await SegmentAnythingSingleton.getInstance();
|
35 |
+
if (!ready) {
|
36 |
+
// Indicate that we are ready to accept requests
|
37 |
+
ready = true;
|
38 |
+
self.postMessage({
|
39 |
+
type: 'ready',
|
40 |
+
});
|
41 |
+
}
|
42 |
+
|
43 |
+
const { type, data } = e.data;
|
44 |
+
if (type === 'reset') {
|
45 |
+
image_inputs = null;
|
46 |
+
image_embeddings = null;
|
47 |
+
|
48 |
+
} else if (type === 'segment') {
|
49 |
+
// Indicate that we are starting to segment the image
|
50 |
+
self.postMessage({
|
51 |
+
type: 'segment_result',
|
52 |
+
data: 'start',
|
53 |
+
});
|
54 |
+
|
55 |
+
// Read the image and recompute image embeddings
|
56 |
+
const image = await RawImage.read(e.data.data);
|
57 |
+
image_inputs = await processor(image);
|
58 |
+
image_embeddings = await model.get_image_embeddings(image_inputs)
|
59 |
+
|
60 |
+
// Indicate that we have computed the image embeddings, and we are ready to accept decoding requests
|
61 |
+
self.postMessage({
|
62 |
+
type: 'segment_result',
|
63 |
+
data: 'done',
|
64 |
+
});
|
65 |
+
|
66 |
+
} else if (type === 'decode') {
|
67 |
+
// Prepare inputs for decoding
|
68 |
+
const reshaped = image_inputs.reshaped_input_sizes[0];
|
69 |
+
const points = data.map(x => [x.point[0] * reshaped[1], x.point[1] * reshaped[0]])
|
70 |
+
const labels = data.map(x => BigInt(x.label));
|
71 |
+
|
72 |
+
const input_points = new Tensor(
|
73 |
+
'float32',
|
74 |
+
points.flat(Infinity),
|
75 |
+
[1, 1, points.length, 2],
|
76 |
+
)
|
77 |
+
const input_labels = new Tensor(
|
78 |
+
'int64',
|
79 |
+
labels.flat(Infinity),
|
80 |
+
[1, 1, labels.length],
|
81 |
+
)
|
82 |
+
|
83 |
+
// Generate the mask
|
84 |
+
const outputs = await model({
|
85 |
+
...image_embeddings,
|
86 |
+
input_points,
|
87 |
+
input_labels,
|
88 |
+
})
|
89 |
+
|
90 |
+
// Post-process the mask
|
91 |
+
const masks = await processor.post_process_masks(
|
92 |
+
outputs.pred_masks,
|
93 |
+
image_inputs.original_sizes,
|
94 |
+
image_inputs.reshaped_input_sizes,
|
95 |
+
);
|
96 |
+
|
97 |
+
// Send the result back to the main thread
|
98 |
+
self.postMessage({
|
99 |
+
type: 'decode_result',
|
100 |
+
data: {
|
101 |
+
mask: RawImage.fromTensor(masks[0][0]),
|
102 |
+
scores: outputs.iou_scores.data,
|
103 |
+
},
|
104 |
+
});
|
105 |
+
|
106 |
+
} else {
|
107 |
+
throw new Error(`Unknown message type: ${type}`);
|
108 |
+
}
|
109 |
+
}
|