import json from copy import deepcopy from dataclasses import dataclass, field from pathlib import Path from typing import Any, Literal, Optional, Type, Union import torch from typing_extensions import Self import tsai_gpt.model from tsai_gpt.utils import find_multiple @dataclass class Config: name: str = "" hf_config: dict = field(default_factory=dict) block_size: int = 4096 vocab_size: int = 50254 padding_multiple: int = 512 padded_vocab_size: Optional[int] = None n_layer: int = 16 n_head: int = 32 n_embd: int = 4096 rotary_percentage: float = 0.25 parallel_residual: bool = True bias: bool = True lm_head_bias: bool = False # to use multi-head attention (MHA), set this to `n_head` (default) # to use multi-query attention (MQA), set this to 1 # to use grouped-query attention (GQA), set this to a value in between # Example with `n_head=4` # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐ # │ v ││ v ││ v ││ v │ │ v │ │ v │ │ v │ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘ # │ │ │ │ │ │ │ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐ # │ k ││ k ││ k ││ k │ │ k │ │ k │ │ k │ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘ # │ │ │ │ ┌──┴──┐ ┌──┴──┐ ┌────┬──┴─┬────┐ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ # │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ # └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ # ◀──────────────────▶ ◀──────────────────▶ ◀──────────────────▶ # MHA GQA MQA # n_query_groups=4 n_query_groups=2 n_query_groups=1 # # credit https://arxiv.org/pdf/2305.13245.pdf n_query_groups: Optional[int] = None shared_attention_norm: bool = False _norm_class: Literal["LayerNorm", "RMSNorm"] = "LayerNorm" norm_eps: float = 1e-5 _mlp_class: Literal["GptNeoxMLP", "LLaMAMLP"] = "GptNeoxMLP" gelu_approximate: str = "none" intermediate_size: Optional[int] = None rope_condense_ratio: int = 1 rope_base: int = 10000 def __post_init__(self): if not self.name: self.name = self.hf_config.get("name", self.name) assert self.n_embd % self.n_head == 0 self.head_size = self.n_embd // self.n_head # vocab size should be a power of 2 to be optimal on hardware. compute the closest value if self.padded_vocab_size is None: self.padded_vocab_size = find_multiple(self.vocab_size, self.padding_multiple) else: # vocab size shouldn't be larger than padded vocab size self.vocab_size = min(self.vocab_size, self.padded_vocab_size) # compute the number of query groups if self.n_query_groups is not None: assert self.n_head % self.n_query_groups == 0 else: self.n_query_groups = self.n_head # compute the intermediate size for MLP if not set if self.intermediate_size is None: if self._mlp_class == "LLaMAMLP": raise ValueError("The config needs to set the `intermediate_size`") self.intermediate_size = 4 * self.n_embd self.rope_n_elem = int(self.rotary_percentage * self.head_size) @classmethod def from_name(cls, name: str, **kwargs: Any) -> Self: if name not in name_to_config: # search through all `config['hf_config']['name']` conf_dict = next(config for config in configs if name == config["hf_config"]["name"]) else: conf_dict = name_to_config[name] conf_dict = conf_dict.copy() if "condense_ratio" in kwargs: # legacy name kwargs["rope_condense_ratio"] = kwargs.pop("condense_ratio") conf_dict.update(kwargs) return cls(**conf_dict) @classmethod def from_json(cls, path: Union[str, Path], **kwargs: Any) -> Self: with open(path, encoding="utf-8") as fp: json_kwargs = json.load(fp) if "condense_ratio" in json_kwargs: # legacy name json_kwargs["rope_condense_ratio"] = json_kwargs.pop("condense_ratio") if "condense_ratio" in kwargs: # legacy name kwargs["rope_condense_ratio"] = kwargs.pop("condense_ratio") if "org" in json_kwargs: # legacy name json_kwargs["hf_config"] = {"name": json_kwargs["name"], "org": json_kwargs.pop("org")} if "org" in kwargs: # legacy name kwargs["hf_config"] = {"name": kwargs.get("name", json_kwargs["name"]), "org": kwargs.pop("org")} json_kwargs.update(kwargs) return cls(**json_kwargs) @property def mlp_class(self) -> Type: # `self._mlp_class` cannot be the type to keep the config json serializable return getattr(tsai_gpt.model, self._mlp_class) @property def norm_class(self) -> Type: # `self._norm_class` cannot be the type to keep the config json serializable if self._norm_class == "RMSNorm": from tsai_gpt.rmsnorm import RMSNorm return RMSNorm return getattr(torch.nn, self._norm_class) ######################## # Stability AI StableLM ######################## configs = [ # https://huggingface.co./stabilityai/stablelm-base-alpha-3b/blob/main/config.json dict(name="stablelm-base-alpha-3b", hf_config=dict(org="stabilityai", name="stablelm-base-alpha-3b")), # https://huggingface.co./stabilityai/stablelm-base-alpha-7b/blob/main/config.json dict( name="stablelm-base-alpha-7b", hf_config=dict(org="stabilityai", name="stablelm-base-alpha-7b"), n_head=48, n_embd=6144, padding_multiple=256, ), # https://huggingface.co./stabilityai/stablelm-tuned-alpha-3b/blob/main/config.json dict(name="stablelm-tuned-alpha-3b", hf_config=dict(org="stabilityai", name="stablelm-tuned-alpha-3b"), n_head=32), # https://huggingface.co./stabilityai/stablelm-tuned-alpha-7b/blob/main/config.json dict( name="stablelm-tuned-alpha-7b", hf_config=dict(org="stabilityai", name="stablelm-tuned-alpha-7b"), n_head=48, n_embd=6144, padding_multiple=256, ), ] #################### # EleutherAI Pythia #################### pythia = [ # https://huggingface.co./EleutherAI/pythia-70m/blob/main/config.json dict( name="pythia-70m", hf_config=dict(org="EleutherAI", name="pythia-70m"), block_size=2048, n_layer=6, n_embd=512, n_head=8, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-160m/blob/main/config.json dict( name="pythia-160m", hf_config=dict(org="EleutherAI", name="pythia-160m"), block_size=2048, n_layer=12, n_embd=768, n_head=12, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-410m/blob/main/config.json dict( name="pythia-410m", hf_config=dict(org="EleutherAI", name="pythia-410m"), block_size=2048, n_layer=24, n_embd=1024, n_head=16, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-1b/blob/main/config.json dict( name="pythia-1b", hf_config=dict(org="EleutherAI", name="pythia-1b"), block_size=2048, n_embd=2048, n_head=8, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-1.4b/blob/main/config.json dict( name="pythia-1.4b", hf_config=dict(org="EleutherAI", name="pythia-1.4b"), block_size=2048, n_layer=24, n_embd=2048, n_head=16, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-2.8b/blob/main/config.json dict( name="pythia-2.8b", hf_config=dict(org="EleutherAI", name="pythia-2.8b"), block_size=2048, n_layer=32, n_embd=2560, padding_multiple=128, ), # https://huggingface.co./EleutherAI/pythia-6.9b/blob/main/config.json dict( name="pythia-6.9b", hf_config=dict(org="EleutherAI", name="pythia-6.9b"), block_size=2048, n_layer=32, padding_multiple=256, ), # https://huggingface.co./EleutherAI/pythia-12b/blob/main/config.json dict( name="pythia-12b", hf_config=dict(org="EleutherAI", name="pythia-12b"), block_size=2048, n_layer=36, n_embd=5120, n_head=40, ), ] configs.extend(pythia) for c in pythia: copy = c.copy() copy["name"] = f"{c['name']}-deduped" copy["hf_config"]["name"] = f"{c['hf_config']['name']}-deduped" configs.append(copy) #################################### # togethercomputer RedPajama INCITE #################################### redpajama_incite = [ # https://huggingface.co./togethercomputer/RedPajama-INCITE-Base-3B-v1/blob/main/config.json dict( name="RedPajama-INCITE-{}-3B-v1", hf_config=dict(org="togethercomputer", name="RedPajama-INCITE-{}-3B-v1"), block_size=2048, n_layer=32, n_embd=2560, padding_multiple=256, rotary_percentage=1.0, parallel_residual=False, ), # https://huggingface.co./togethercomputer/RedPajama-INCITE-7B-Base/blob/main/config.json dict( name="RedPajama-INCITE-7B-{}", hf_config=dict(org="togethercomputer", name="RedPajama-INCITE-7B-{}"), block_size=2048, n_layer=32, padding_multiple=256, rotary_percentage=1.0, parallel_residual=False, ), # this redirects to the checkpoint above. kept for those who had the old weights already downloaded dict( name="RedPajama-INCITE-{}-7B-v0.1", hf_config=dict(org="togethercomputer", name="RedPajama-INCITE-{}-7B-v0.1"), block_size=2048, n_layer=32, padding_multiple=256, rotary_percentage=1.0, parallel_residual=False, ), ] for c in redpajama_incite: for kind in ("Base", "Chat", "Instruct"): copy = c.copy() copy["name"] = c["name"].format(kind) copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind) configs.append(copy) ################# # TII UAE Falcon ################# falcon = [ # https://huggingface.co./tiiuae/falcon-7b/blob/main/config.json dict( name="falcon-7b{}", hf_config=dict(org="tiiuae", name="falcon-7b{}"), block_size=2048, vocab_size=65024, padded_vocab_size=65024, n_layer=32, n_head=71, n_embd=4544, rotary_percentage=1.0, n_query_groups=1, bias=False, # this is not in the config, but in the original model implementation, only for this config shared_attention_norm=True, ), # https://huggingface.co./tiiuae/falcon-40b/blob/main/config.json dict( name="falcon-40b{}", hf_config=dict(org="tiiuae", name="falcon-40b{}"), block_size=2048, vocab_size=65024, padded_vocab_size=65024, n_layer=60, n_head=128, n_embd=8192, rotary_percentage=1.0, n_query_groups=8, bias=False, ), ] for c in falcon: for kind in ("", "-instruct"): copy = c.copy() copy["name"] = c["name"].format(kind) copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind) configs.append(copy) # https://huggingface.co./tiiuae/falcon-180b/blob/main/config.json falcon180b = dict( name="falcon-180B{}", hf_config=dict(org="tiiuae", name="falcon-180B{}"), block_size=2048, vocab_size=65024, padded_vocab_size=65024, n_layer=80, n_head=232, n_embd=14848, rotary_percentage=1.0, n_query_groups=8, bias=False, ) for kind in ("", "-chat"): copy = falcon180b.copy() copy["name"] = falcon180b["name"].format(kind) copy["hf_config"]["name"] = falcon180b["hf_config"]["name"].format(kind) configs.append(copy) ############################# # OpenLM Research Open LLaMA ############################# open_LLaMA = [ # https://huggingface.co./openlm-research/open_llama_3b/blob/main/config.json dict( name="open_llama_3b", hf_config=dict(org="openlm-research", name="open_llama_3b"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=26, n_embd=3200, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=8640, ), # https://huggingface.co./openlm-research/open_llama_7b/blob/main/config.json dict( name="open_llama_7b", hf_config=dict(org="openlm-research", name="open_llama_7b"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./openlm-research/open_llama_13b/blob/main/config.json dict( name="open_llama_13b", hf_config=dict(org="openlm-research", name="open_llama_13b"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=13824, ), ] configs.extend(open_LLaMA) ############### # LMSYS Vicuna ############### vicuna = [ # https://huggingface.co./lmsys/vicuna-7b-v1.3/blob/main/config.json dict( name="vicuna-7b-v1.3", hf_config=dict(org="lmsys", name="vicuna-7b-v1.3"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./lmsys/vicuna-13b-v1.3/blob/main/config.json dict( name="vicuna-13b-v1.3", hf_config=dict(org="lmsys", name="vicuna-13b-v1.3"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./lmsys/vicuna-33b-v1.3/blob/main/config.json dict( name="vicuna-33b-v1.3", hf_config=dict(org="lmsys", name="vicuna-33b-v1.3"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=60, n_head=52, n_embd=6656, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=17920, ), # https://huggingface.co./lmsys/vicuna-7b-v1.5/blob/main/config.json dict( name="vicuna-7b-v1.5", hf_config=dict(org="lmsys", name="vicuna-7b-v1.5"), vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./lmsys/vicuna-7b-v1.5-16k/blob/main/config.json dict( name="vicuna-7b-v1.5-16k", hf_config=dict(org="lmsys", name="vicuna-7b-v1.5-16k"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=11008, rope_condense_ratio=4, ), # https://huggingface.co./lmsys/vicuna-13b-v1.5/blob/main/config.json dict( name="vicuna-13b-v1.5", hf_config=dict(org="lmsys", name="vicuna-13b-v1.5"), vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./lmsys/vicuna-13b-v1.5-16k/blob/main/config.json dict( name="vicuna-13b-v1.5-16k", hf_config=dict(org="lmsys", name="vicuna-13b-v1.5-16k"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=13824, rope_condense_ratio=4, ), ] configs.extend(vicuna) ################# # LMSYS LongChat ################# long_chat = [ # https://huggingface.co./lmsys/longchat-7b-16k/blob/main/config.json dict( name="longchat-7b-16k", hf_config=dict(org="lmsys", name="longchat-7b-16k"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=11008, rope_condense_ratio=8, ), # https://huggingface.co./lmsys/longchat-13b-16k/blob/main/config.json dict( name="longchat-13b-16k", hf_config=dict(org="lmsys", name="longchat-13b-16k"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=13824, rope_condense_ratio=8, ), ] configs.extend(long_chat) ###################### # NousResearch Hermes ###################### nous_research = [ # https://huggingface.co./NousResearch/Nous-Hermes-llama-2-7b/blob/main/config.json dict( name="Nous-Hermes-llama-2-7b", hf_config=dict(org="NousResearch", name="Nous-Hermes-llama-2-7b"), padded_vocab_size=32000, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./NousResearch/Nous-Hermes-13B/blob/main/config.json dict( name="Nous-Hermes-13b", hf_config=dict(org="NousResearch", name="Nous-Hermes-13b"), block_size=2048, vocab_size=32000, padded_vocab_size=32001, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-6, _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./NousResearch/Nous-Hermes-Llama2-13b dict( name="Nous-Hermes-Llama2-13b", hf_config=dict(org="NousResearch", name="Nous-Hermes-Llama2-13b"), vocab_size=32000, padded_vocab_size=32032, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=13824, ), ] configs.extend(nous_research) ############### # Meta LLaMA 2 ############### llama_2 = [ # https://huggingface.co./meta-llama/Llama-2-7b-hf/blob/main/config.json dict( name="Llama-2-7b{}-hf", hf_config=dict(org="meta-llama", name="Llama-2-7b{}-hf"), vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./meta-llama/Llama-2-13b-hf/blob/main/config.json dict( name="Llama-2-13b{}-hf", hf_config=dict(org="meta-llama", name="Llama-2-13b{}-hf"), vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./meta-llama/Llama-2-70b-hf/blob/main/config.json dict( name="Llama-2-70b{}-hf", hf_config=dict(org="meta-llama", name="Llama-2-70b{}-hf"), vocab_size=32000, padding_multiple=64, n_layer=80, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=28672, ), ] for c in llama_2: for kind in ("", "-chat"): copy = c.copy() copy["name"] = c["name"].format(kind) copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind) configs.append(copy) ########################## # Stability AI FreeWilly2 ########################## freewilly_2 = [ # https://huggingface.co./stabilityai/FreeWilly2/blob/main/config.json dict( name="FreeWilly2", hf_config=dict(org="stabilityai", name="FreeWilly2"), vocab_size=32000, padding_multiple=64, n_layer=80, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=28672, ) ] configs.extend(freewilly_2) ################## # Meta Code Llama ################## code_llama = [ # https://huggingface.co./codellama/CodeLlama-7b-hf/blob/main/config.json dict( name="CodeLlama-7b-hf", hf_config=dict(org="codellama", name="CodeLlama-7b-hf"), block_size=16384, vocab_size=32016, padding_multiple=16, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=11008, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-13b-hf/blob/main/config.json dict( name="CodeLlama-13b-hf", hf_config=dict(org="codellama", name="CodeLlama-13b-hf"), block_size=16384, vocab_size=32016, padding_multiple=16, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=13824, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-34b-hf/blob/main/config.json dict( name="CodeLlama-34b-hf", hf_config=dict(org="codellama", name="CodeLlama-34b-hf"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=48, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=22016, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-7b-Python-hf/blob/main/config.json dict( name="CodeLlama-7b-Python-hf", hf_config=dict(org="codellama", name="CodeLlama-7b-Python-hf"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=11008, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-13b-Python-hf/blob/main/config.json dict( name="CodeLlama-13b-Python-hf", hf_config=dict(org="codellama", name="CodeLlama-13b-Python-hf"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=13824, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-34b-Python-hf/blob/main/config.json dict( name="CodeLlama-34b-Python-hf", hf_config=dict(org="codellama", name="CodeLlama-34b-Python-hf"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=48, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=22016, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-7b-Instruct-hf/tree/main/config.json dict( name="CodeLlama-7b-Instruct-hf", hf_config=dict(org="codellama", name="CodeLlama-7b-Instruct-hf"), block_size=16384, vocab_size=32016, padding_multiple=16, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=11008, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-13b-Instruct-hf/blob/main/config.json dict( name="CodeLlama-13b-Instruct-hf", hf_config=dict(org="codellama", name="CodeLlama-13b-Instruct-hf"), block_size=2048, vocab_size=32016, padding_multiple=16, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=13824, rope_base=1000000, ), # https://huggingface.co./codellama/CodeLlama-34b-Instruct-hf/blob/main/config.json dict( name="CodeLlama-34b-Instruct-hf", hf_config=dict(org="codellama", name="CodeLlama-34b-Instruct-hf"), block_size=16384, vocab_size=32000, padding_multiple=64, n_layer=48, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=22016, rope_base=1000000, ), ] configs.extend(code_llama) ######################## # garage-bAInd Platypus ######################## platypus = [ # https://huggingface.co./garage-bAInd/Platypus-30B/blob/main/config.json dict( name="Platypus-30B", hf_config=dict(org="garage-bAInd", name="Platypus-30B"), block_size=2048, padded_vocab_size=32000, n_layer=60, n_head=52, n_embd=6656, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-06, _mlp_class="LLaMAMLP", intermediate_size=17920, ), # https://huggingface.co./garage-bAInd/Platypus2-7B/blob/main/config.json dict( name="Platypus2-7B", hf_config=dict(org="garage-bAInd", name="Platypus2-7B"), padded_vocab_size=32000, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=11008, ), # https://huggingface.co./garage-bAInd/Platypus2-13B/blob/main/config.json dict( name="Platypus2-13B", hf_config=dict(org="garage-bAInd", name="Platypus2-13B"), padded_vocab_size=32000, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./garage-bAInd/Platypus2-70B/blob/main/config.json dict( name="Platypus2-70B", hf_config=dict(org="garage-bAInd", name="Platypus2-70B"), padded_vocab_size=32000, n_layer=80, n_head=64, n_embd=8192, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=28672, ), # https://huggingface.co./garage-bAInd/Camel-Platypus2-13B/blob/main/config.json dict( name="Camel-Platypus2-13B", hf_config=dict(org="garage-bAInd", name="Camel-Platypus2-13B"), padded_vocab_size=32000, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./garage-bAInd/Camel-Platypus2-70B/blob/main/config.json dict( name="Camel-Platypus2-70B", hf_config=dict(org="garage-bAInd", name="Camel-Platypus2-70B"), padded_vocab_size=32000, n_layer=80, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=28672, ), # https://huggingface.co./garage-bAInd/Stable-Platypus2-13B/blob/main/config.json dict( name="Stable-Platypus2-13B", hf_config=dict(org="garage-bAInd", name="Stable-Platypus2-13B"), padded_vocab_size=32000, n_layer=40, n_head=40, n_embd=5120, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=13824, ), # https://huggingface.co./garage-bAInd/Platypus2-70B-instruct/blob/main/config.json dict( name="Platypus2-70B-instruct", hf_config=dict(org="garage-bAInd", name="Platypus2-70B-instruct"), padded_vocab_size=32000, n_layer=80, n_head=64, n_embd=8192, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=28672, ), ] configs.extend(platypus) ########################## # Stability AI StableCode ########################## stablecode = [ # https://huggingface.co./stabilityai/stablecode-completion-alpha-3b/blob/main/config.json dict( name="stablecode-completion-alpha-3b", hf_config=dict(org="stabilityai", name="stablecode-completion-alpha-3b"), block_size=16384, vocab_size=49152, n_layer=32, n_embd=2560, ), # https://huggingface.co./stabilityai/stablecode-completion-alpha-3b-4k/blob/main/config.json dict( name="stablecode-completion-alpha-3b-4k", hf_config=dict(org="stabilityai", name="stablecode-completion-alpha-3b-4k"), vocab_size=49152, n_layer=32, n_embd=2560, ), # https://huggingface.co./stabilityai/stablecode-instruct-alpha-3b/blob/main/config.json dict( name="stablecode-instruct-alpha-3b", hf_config=dict(org="stabilityai", name="stablecode-instruct-alpha-3b"), vocab_size=49152, n_layer=32, n_embd=2560, ), ] configs.extend(stablecode) ################################## # togethercomputer LLaMA-2-7B-32K ################################## together_llama2_32k = [ # https://huggingface.co./togethercomputer/LLaMA-2-7B-32K/blob/main/config.json dict( name="LLaMA-2-7B-32K", hf_config=dict(org="togethercomputer", name="LLaMA-2-7B-32K"), vocab_size=32000, padding_multiple=64, n_layer=32, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", _mlp_class="LLaMAMLP", intermediate_size=11008, rope_condense_ratio=8, ) ] configs.extend(together_llama2_32k) ################ # Microsoft Phi ################ phi = [ # https://huggingface.co./microsoft/phi-1_5/blob/main/config.json dict( name="phi-1_5", hf_config=dict(org="microsoft", name="phi-1_5"), vocab_size=50257, padded_vocab_size=51200, block_size=2048, n_embd=2048, n_layer=24, rotary_percentage=0.5, # 32 / (n_embd / n_head) = 32 / 64 shared_attention_norm=True, lm_head_bias=True, gelu_approximate="tanh", ) ] configs.extend(phi) ############# # Mistral AI ############# mistral = [ # https://huggingface.co./mistralai/Mistral-7B-v0.1/blob/main/config.json dict( name="Mistral-7B-{}v0.1", hf_config=dict(org="mistralai", name="Mistral-7B-{}v0.1"), padded_vocab_size=32000, block_size=4096, # should be 32768 but sliding window attention is not implemented n_layer=32, n_query_groups=8, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", norm_eps=1e-05, _mlp_class="LLaMAMLP", intermediate_size=14336, ) ] for c in mistral: for kind in ("", "Instruct-"): copy = c.copy() copy["name"] = c["name"].format(kind) copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind) configs.append(copy) ############ # TinyLlama ############ tiny_llama = [ dict( name="tiny-llama-1.1b", hf_config=dict(org="PY007", name="TinyLlama-1.1B-intermediate-step-480k-1T"), block_size=2048, vocab_size=32000, padding_multiple=64, n_layer=22, n_head=32, n_embd=2048, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", # original TinyLlama uses FusedRMSNorm norm_eps=1e-5, _mlp_class="LLaMAMLP", intermediate_size=5632, n_query_groups=4, ), dict( name="tiny-llama-new", hf_config=dict(org="PY007", name="TinyLlama-1.1B-intermediate-step-480k-1T"), block_size=768, vocab_size=32000, padding_multiple=64, n_layer=18, n_head=32, n_embd=1024, rotary_percentage=1.0, parallel_residual=False, bias=False, _norm_class="RMSNorm", # original TinyLlama uses FusedRMSNorm norm_eps=1e-5, _mlp_class="LLaMAMLP", intermediate_size=5632, n_query_groups=4, ), ] configs.extend(tiny_llama) name_to_config = {config["name"]: config for config in configs}