adefossez's picture
support both torch and xformers + merge apps
6ec60d5
raw
history blame
12.2 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen
MODEL = None # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomitting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(3)
pool.__enter__()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version='melody'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = MusicGen.get_pretrained(version)
def _do_predictions(texts, melodies, duration, **gen_kwargs):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., :int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
if processed_melodies.any():
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=False
)
else:
outputs = MODEL.generate(texts, progress=False)
outputs = outputs.detach().cpu().float()
out_files = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_files.append(pool.submit(make_waveform, file.name))
res = [out_file.result() for out_file in out_files]
print("batch finished", len(texts), time.time() - be)
return res
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('melody')
res = _do_predictions(texts, melodies, BATCHED_DURATION)
return [res]
def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef):
topk = int(topk)
load_model(model)
if duration > MODEL.lm.cfg.dataset.segment_duration:
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
outs = _do_predictions(
[text], [melody], duration,
topk=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
return outs[0]
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MusicGen
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co./papers/2306.05284)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=30, value=10, label="Duration", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Column():
output = gr.Video(label="Generated Music")
submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
gr.Examples(
fn=predict_full,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody"
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"melody"
],
[
"90s rock song with electric guitar and heavy drums",
None,
"medium"
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody"
],
[
"lofi slow bpm electro chill with organic samples",
None,
"medium",
],
],
inputs=[text, melody, model],
outputs=[output]
)
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
You can generate up to 30 seconds of audio.
We present 4 model variations:
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
2. Small -- a 300M transformer decoder conditioned on text only.
3. Medium -- a 1.5B transformer decoder conditioned on text only.
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
When using `melody`, ou can optionaly provide a reference audio from
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
"""
)
interface.queue().launch(**launch_kwargs, max_threads=1)
def ui_batched(launch_kwargs):
with gr.Blocks() as demo:
gr.Markdown(
"""
# MusicGen
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co./papers/2306.05284).
<br/>
<a href="https://huggingface.co./spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
for longer sequences, more control and no queue.</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", lines=2, interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Generate")
with gr.Column():
output = gr.Video(label="Generated Music")
submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
gr.Examples(
fn=predict_batched,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
],
[
"90s rock song with electric guitar and heavy drums",
None,
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
"./assets/bach.mp3",
],
[
"lofi slow bpm electro chill with organic samples",
None,
],
],
inputs=[text, melody],
outputs=[output]
)
gr.Markdown("""
### More details
The model will generate 12 seconds of audio based on the description you provided.
You can optionaly provide a reference audio from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
All samples are generated with the `melody` model.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
""")
demo.queue(max_size=8 * 4).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
# Show the interface
if IS_BATCHED:
ui_batched(launch_kwargs)
else:
ui_full(launch_kwargs)