Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from nemo.collections.asr.models import EncDecSpeakerLabelModel | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
STYLE = """ | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous"> | |
""" | |
OUTPUT_OK = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div> | |
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div> | |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">similarity score: {:.1f}%</h1></div> | |
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row"> | |
</div> | |
""" | |
) | |
OUTPUT_FAIL = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div> | |
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div> | |
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">similarity score: {:.1f}%</h1></div> | |
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row"> | |
</div> | |
""" | |
) | |
THRESHOLD = 0.80 | |
model_name = "nvidia/speakerverification_en_titanet_large" | |
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device) | |
def compare_samples(path1, path2): | |
if not (path1 and path2): | |
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' | |
embs1 = model.get_embedding(path1).squeeze() | |
embs2 = model.get_embedding(path2).squeeze() | |
#Length Normalize | |
X = embs1 / torch.linalg.norm(embs1) | |
Y = embs2 / torch.linalg.norm(embs2) | |
# Score | |
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5) | |
similarity_score = (similarity_score + 1) / 2 | |
# Decision | |
if similarity_score >= THRESHOLD: | |
return OUTPUT_OK.format(similarity_score * 100) | |
else: | |
return OUTPUT_FAIL.format(similarity_score * 100) | |
inputs = [ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"), | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"), | |
] | |
upload_inputs = [ | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #1"), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #2"), | |
] | |
description = ( | |
"This demonstration will analyze two recordings of speech and ascertain whether they have been spoken by the same individual.\n" | |
"You can attempt this exercise using your own voice." | |
) | |
article = ( | |
"<p style='text-align: center'>" | |
"<a href='https://huggingface.co./nvidia/speakerverification_en_titanet_large' target='_blank'>ποΈ Learn more about TitaNet model</a> | " | |
"<a href='https://arxiv.org/pdf/2110.04410.pdf' target='_blank'>π TitaNet paper</a> | " | |
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» Repository</a>" | |
"</p>" | |
) | |
examples = [ | |
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10270_5r0dWxy17C8-00002.wav"], | |
["data/id10271_1gtz-CUIygI-00001.wav", "data/id10271_1gtz-CUIygI-00002.wav"], | |
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10271_1gtz-CUIygI-00001.wav"], | |
["data/id10270_5r0dWxy17C8-00002.wav", "data/id10271_1gtz-CUIygI-00002.wav"], | |
] | |
microphone_interface = gr.Interface( | |
fn=compare_samples, | |
inputs=inputs, | |
outputs=gr.outputs.HTML(label=""), | |
title="Speaker Verification with TitaNet Embeddings", | |
description=description, | |
article=article, | |
layout="horizontal", | |
theme="huggingface", | |
allow_flagging=False, | |
live=False, | |
examples=examples, | |
) | |
upload_interface = gr.Interface( | |
fn=compare_samples, | |
inputs=upload_inputs, | |
outputs=gr.outputs.HTML(label=""), | |
title="Speaker Verification with TitaNet Embeddings", | |
description=description, | |
article=article, | |
layout="horizontal", | |
theme="huggingface", | |
allow_flagging=False, | |
live=False, | |
examples=examples, | |
) | |
demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"]) | |
demo.launch(enable_queue=True) |