|
<!DOCTYPE html> |
|
<html lang="en"> |
|
|
|
<head> |
|
<meta charset="UTF-8"> |
|
<title>Object Detection - Hugging Face Transformers.js</title> |
|
|
|
<script type="module"> |
|
|
|
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; |
|
|
|
|
|
window.pipeline = pipeline; |
|
</script> |
|
|
|
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet"> |
|
|
|
<link rel="stylesheet" href="css/styles.css"> |
|
</head> |
|
|
|
<body> |
|
<div class="container-main"> |
|
|
|
<div class="header"> |
|
<div class="header-logo"> |
|
<img src="images/logo.png" alt="logo"> |
|
</div> |
|
<div class="header-main-text"> |
|
<h1>Hugging Face Transformers.js</h1> |
|
</div> |
|
<div class="header-sub-text"> |
|
<h3>Free AI Models for JavaScript Web Development</h3> |
|
</div> |
|
</div> |
|
<hr> |
|
|
|
|
|
<div class="row mt-5"> |
|
<div class="col-md-12 text-center"> |
|
<a href="index.html" class="btn btn-outline-secondary" |
|
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a> |
|
</div> |
|
</div> |
|
|
|
|
|
<div class="container mt-5"> |
|
|
|
<div class="text-center"> |
|
<h2>Computer Vision</h2> |
|
<h4>Object Detection</h4> |
|
</div> |
|
|
|
|
|
<div id="object-detection-container" class="container mt-4"> |
|
<h5>Run Object Detection with facebook/detr-resnet-50:</h5> |
|
<div class="d-flex align-items-center"> |
|
<label for="objectDetectionURLText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter |
|
image URL:</label> |
|
<input type="text" class="form-control flex-grow-1" id="objectDetectionURLText" |
|
value="https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg" |
|
placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;"> |
|
<button id="DetectButton" class="btn btn-primary" onclick="detectImage()">Detect</button> |
|
</div> |
|
<div class="mt-4"> |
|
<h4>Output:</h4> |
|
<pre id="outputArea"></pre> |
|
</div> |
|
</div> |
|
|
|
<hr> |
|
|
|
<div id="object-detection-local-container" class="container mt-4"> |
|
<h5>Detect a Local Image:</h5> |
|
<div class="d-flex align-items-center"> |
|
<label for="objectDetectionLocalFile" class="mb-0 text-nowrap" |
|
style="margin-right: 15px;">Select Local Image:</label> |
|
<input type="file" id="objectDetectionLocalFile" accept="image/*" /> |
|
<button id="DetectButtonLocal" class="btn btn-primary" |
|
onclick="detectImageLocal()">Detect</button> |
|
</div> |
|
<div class="mt-4"> |
|
<h4>Output:</h4> |
|
<pre id="outputAreaLocal"></pre> |
|
</div> |
|
</div> |
|
|
|
|
|
<div class="row mt-5"> |
|
<div class="col-md-12 text-center"> |
|
<a href="index.html" class="btn btn-outline-secondary" |
|
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<script> |
|
|
|
let detector; |
|
|
|
|
|
async function initializeModel() { |
|
detector = await pipeline('object-detection', 'Xenova/detr-resnet-50'); |
|
|
|
} |
|
|
|
async function detectImage() { |
|
const textFieldValue = document.getElementById("objectDetectionURLText").value.trim(); |
|
|
|
const result = await detector(textFieldValue, { threshold: 0.9 }); |
|
|
|
document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2); |
|
} |
|
|
|
async function detectImageLocal() { |
|
const fileInput = document.getElementById("objectDetectionLocalFile"); |
|
const file = fileInput.files[0]; |
|
|
|
if (!file) { |
|
alert('Please select an image file first.'); |
|
return; |
|
} |
|
|
|
|
|
const url = URL.createObjectURL(file); |
|
|
|
const result = await detector(url, { threshold: 0.9 }); |
|
|
|
document.getElementById("outputAreaLocal").innerText = JSON.stringify(result, null, 2); |
|
} |
|
|
|
|
|
window.addEventListener("DOMContentLoaded", initializeModel); |
|
</script> |
|
</body> |
|
|
|
</html> |