Spaces:
Sleeping
Sleeping
su
commited on
Commit
·
9ef92ae
1
Parent(s):
faf8aca
requirements and app file
Browse files- app.py +120 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from transformers import pipeline
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
bearer_token = os.environ.get("BEARER_TOKEN")
|
14 |
+
print(bearer_token)
|
15 |
+
|
16 |
+
|
17 |
+
search_url = "https://api.twitter.com/2/tweets/search/recent"
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def bearer_oauth(r):
|
22 |
+
"""
|
23 |
+
Method required by bearer token authentication.
|
24 |
+
"""
|
25 |
+
|
26 |
+
r.headers["Authorization"] = f"Bearer {bearer_token}"
|
27 |
+
r.headers["User-Agent"] = "v2RecentSearchPython"
|
28 |
+
return r
|
29 |
+
|
30 |
+
def connect_to_endpoint(url, params):
|
31 |
+
response = requests.get(url, auth=bearer_oauth, params=params)
|
32 |
+
print(response.status_code)
|
33 |
+
if response.status_code != 200:
|
34 |
+
raise Exception(response.status_code, response.text)
|
35 |
+
return response.json()
|
36 |
+
|
37 |
+
|
38 |
+
def fetch_tweets(tag):
|
39 |
+
q = "\"" + tag + "\""
|
40 |
+
query_params = {'query': q, 'tweet.fields': 'author_id', 'max_results': 100}
|
41 |
+
json_response = connect_to_endpoint(search_url, query_params)
|
42 |
+
#print(json.dumps(json_response, indent=4, sort_keys=True))
|
43 |
+
phrases = []
|
44 |
+
for entry in json_response["data"]:
|
45 |
+
phrases.append(entry["text"])
|
46 |
+
return phrases
|
47 |
+
|
48 |
+
pipe = pipeline("text-classification", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
49 |
+
|
50 |
+
def analyze_phrases(phrases):
|
51 |
+
positive = 0
|
52 |
+
positive_examples = {}
|
53 |
+
negative = 0
|
54 |
+
negative_examples = {}
|
55 |
+
neutral = 0
|
56 |
+
neutral_examples = {}
|
57 |
+
outputs = pipe(phrases)
|
58 |
+
for index, x in enumerate(outputs):
|
59 |
+
if x['label'] == 'positive':
|
60 |
+
positive += 1
|
61 |
+
if positive <= 3:
|
62 |
+
positive_examples[phrases[index]] = x['score']
|
63 |
+
elif x['label'] == 'neutral':
|
64 |
+
neutral += 1
|
65 |
+
if neutral <= 3:
|
66 |
+
neutral_examples[phrases[index]] = x['score']
|
67 |
+
elif x['label'] == 'negative':
|
68 |
+
negative += 1
|
69 |
+
if negative <= 3:
|
70 |
+
negative_examples[phrases[index]] = x['score']
|
71 |
+
else:
|
72 |
+
pass
|
73 |
+
counts = [positive, neutral, negative]
|
74 |
+
return counts, positive_examples, neutral_examples, negative_examples
|
75 |
+
|
76 |
+
|
77 |
+
def calculate_sentiment(tag):
|
78 |
+
phrases = fetch_tweets(tag)
|
79 |
+
counts, positive_examples, neutral_examples, negative_examples = analyze_phrases(phrases)
|
80 |
+
output = "positive: " + str(counts[0]) + "\n" + "neutral: " + str(counts[1]) + "\n" + "negative: " + str(counts[2])
|
81 |
+
plt.style.use('_mpl-gallery-nogrid')
|
82 |
+
|
83 |
+
|
84 |
+
# make data
|
85 |
+
colors = ['green', 'yellow', 'red']
|
86 |
+
labels = ["Positive", "Neutral", "Negative"]
|
87 |
+
|
88 |
+
# plot
|
89 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
90 |
+
wedges, texts = ax.pie(counts, colors=colors, radius=3, center=(4, 4),
|
91 |
+
wedgeprops={"linewidth": 1, "edgecolor": "white"}, labeldistance=1.05)
|
92 |
+
|
93 |
+
# Create a legend
|
94 |
+
ax.legend(wedges, labels, title="Categories", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
|
95 |
+
|
96 |
+
ax.set(xlim=(0, 8),
|
97 |
+
ylim=(0, 8))
|
98 |
+
print(positive_examples)
|
99 |
+
html_content = ""
|
100 |
+
positive_tweets = list(positive_examples.items())
|
101 |
+
p_df = pd.DataFrame(positive_tweets, columns=["Tweet", "Confidence"])
|
102 |
+
positive_table = p_df.to_html(index=False)
|
103 |
+
|
104 |
+
neutral_tweets = list(neutral_examples.items())
|
105 |
+
n_df = pd.DataFrame(neutral_tweets, columns=["Tweet", "Confidence"])
|
106 |
+
neutral_table = n_df.to_html(index=False)
|
107 |
+
|
108 |
+
negative_tweets = list(negative_examples.items())
|
109 |
+
neg_df = pd.DataFrame(negative_tweets, columns=["Tweet", "Confidence"])
|
110 |
+
negative_table = neg_df.to_html(index=False)
|
111 |
+
|
112 |
+
html_content += f"<h2>Recent Positive Tweets</h2>" + positive_table
|
113 |
+
html_content += f"<h2>Recent Negative Tweets</h2>" + negative_table
|
114 |
+
|
115 |
+
|
116 |
+
return fig, html_content
|
117 |
+
|
118 |
+
|
119 |
+
iface = gr.Interface(fn=calculate_sentiment, inputs="text", outputs=["plot","html"])
|
120 |
+
iface.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
os
|
3 |
+
json
|
4 |
+
transformers
|
5 |
+
matplotlib
|
6 |
+
numpy
|
7 |
+
pandas
|