Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
from langchain_community.llms import LlamaCpp | |
from langchain_core.callbacks import StreamingStdOutCallbackHandler | |
from langchain_core.prompts import PromptTemplate | |
# Load the CSV file for Kendra Locator | |
df = pd.read_csv('location.csv', encoding='Windows-1252') | |
# Initialize session state for selected service and chatbot history | |
if 'selected_service' not in st.session_state: | |
st.session_state.selected_service = "Kendr Locator" | |
if 'user_input' not in st.session_state: | |
st.session_state['user_input'] = '' | |
st.set_page_config(layout="centered", initial_sidebar_state="expanded") | |
st.sidebar.title("KENDR LOCATOR") | |
st.sidebar.write("Find One Near You!") | |
display_option = st.sidebar.selectbox("Select:", ["Address", "Email"]) | |
pin_code_input = st.sidebar.text_input("Enter Pin Code:") | |
if st.sidebar.button("Locate"): | |
if pin_code_input: | |
result = df[df['Pin'].astype(str) == pin_code_input] | |
if not result.empty: | |
st.sidebar.write(f"**Name**: {result['Name'].values[0]}") | |
if display_option == "Address": | |
st.sidebar.write(f"**Address**: {result['Address'].values[0]}") | |
elif display_option == "Email": | |
st.sidebar.write(f"**Email**: {result['Email'].values[0]}") | |
else: | |
st.sidebar.write("No results found.") | |
else: | |
st.sidebar.write("Please enter a pin code.") | |
llm = LlamaCpp( | |
model_path="model.gguf", | |
temperature=0.7, | |
max_tokens=512, | |
top_p=1, | |
callbacks=[StreamingStdOutCallbackHandler()], | |
verbose=False, | |
stop=["###"] | |
) | |
template = """You are a knowledgeable, conversational assistant. Below is a Question that describes a query. Provide a comprehensive Response that thoroughly addresses the query, including reasoning and examples where relevant. | |
### Question: | |
{} | |
### Response: | |
{}""" | |
prompt = PromptTemplate.from_template(template) | |
PROFANE_WORDS = [ | |
"damn", "shit", "fuck", "bitch", "asshole", "dick", "piss", "crap", "cunt", | |
"twat", "slut", "whore", "faggot", "nigger", "kike", "chink", "gook", "spic", | |
"dyke", "suck", "cock", "pussy", "motherfucker", "bastard", "prick", "wanker", | |
"bollocks", "arse", "bloody", "bugger", "tosser", "git", "slag", "pillock", | |
"knob", "knobhead", "wazzock", "clit", "scrotum", "fanny", "ass", "freak", | |
"bimbo", "dumbass", "jackass", "wimp", "idiot", "moron", "loser", "fool", | |
"retard", "cocksucker", "shag", "shagger", "piss off", "go to hell", | |
"dammit", "son of a bitch", "jerk", "puke", "chut", "chutiyah", | |
"bhosdike", "bhenchod", "madarchod", "gandu", "gand", "bhancho", | |
"saala", "kameena", "bhenji", "bhadwa", "kothi", "aankhmar", "launda", | |
"bhikari", "sala", "bhosdika", "kothi", "sundar", "langda", | |
"kaamchor", "gaddha", "bakra", "chudiya", "gando", "bhencod", "lanat", | |
"bhoot", "chakkar", "chutak", "haramkhor", "bandar", "banda", "bakwas", | |
"nikamma", "pagal", "nalayak", "pagal", "khota", "madharchod" | |
] | |
def contains_profanity(text): | |
"""Check if the text contains any profane words.""" | |
return any(word in text.lower() for word in PROFANE_WORDS) | |
def truncate_at_full_stop(text, max_length=512): | |
if len(text) <= max_length: | |
return text | |
truncated = text[:max_length] | |
print(f"Truncated text: {truncated}") | |
last_period = truncated.rfind('.') | |
print(f"Last period index: {last_period}") | |
if last_period != -1: | |
return truncated[:last_period + 1] | |
return truncated | |
df1 = pd.read_csv( | |
'med_name.csv', encoding='utf-8' | |
) | |
# Convert the 'Meds' column to a lowercase list | |
KNOWN_MEDICINES = df1['Meds '].str.lower().str.strip().tolist() | |
def contains_medicine_terms(output): | |
"""Check if the output contains terms that indicate a medicine name.""" | |
return any(term in output for term in [" IP ", " mg ", " ml ", " Mg ", " Ml ", "mg ", "ml ", | |
" gm ", "gm ", " mcg ", "mcg "]) | |
def is_valid_medicine_in_input(user_input): | |
"""Check if the user input contains any valid medicine name.""" | |
return any(med in user_input.lower() for med in KNOWN_MEDICINES) | |
if st.session_state.selected_service == "Kendr Locator": | |
st.title("MedBot") | |
user_input = st.text_input("Your Queries:", key='temp_user_input') | |
if st.button("Ask Away"): | |
if user_input: | |
if contains_profanity(user_input): | |
st.markdown("<span style='color: red;'>Mind The Language Dear!</span>", unsafe_allow_html=True) | |
else: | |
formatted_prompt = template.format(user_input, "") | |
response = llm.invoke(formatted_prompt) | |
if contains_medicine_terms(response): | |
# Generated response has medical terms | |
if is_valid_medicine_in_input(user_input): | |
truncated_response = truncate_at_full_stop(response) | |
st.markdown(f"**MedBot:** {truncated_response}", unsafe_allow_html=False) | |
else: | |
st.markdown("<span style='color: green;'>" | |
"Please consult to a Pharmacist at you nearest Janaushadi Kendr""<br>" | |
"Use Kendr Locator to find one near you!" | |
"</span>", unsafe_allow_html=True) | |
else: | |
# No medicine-related terms, safe to display response | |
truncated_response = truncate_at_full_stop(response) | |
st.markdown(f"**MedBot:** {truncated_response}", unsafe_allow_html=False) | |
st.warning("Developer's notice : Responses are generated by AI and maybe inaccurate or inappropriate." | |
"Any received medical or financial consult is not a substitute for professional advice.") |