Spaces:
Runtime error
Runtime error
Commit
·
3ecf051
1
Parent(s):
4288d88
Update main.py
Browse files
main.py
CHANGED
@@ -1,51 +1,56 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
from fastapi.responses import FileResponse
|
4 |
-
from transformers import
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
# Initialize the tokenizer and model
|
9 |
-
tokenizer =
|
10 |
-
model =
|
11 |
|
|
|
12 |
with open("cyberpunk_lore.txt", "r") as f:
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
input_ids = tokenizer.batch_encode_plus(dataset, return_tensors="pt")["input_ids"]
|
17 |
-
|
18 |
-
# Set up training arguments
|
19 |
training_args = TrainingArguments(
|
20 |
-
output_dir=
|
21 |
-
|
22 |
-
num_train_epochs=5,
|
23 |
-
per_device_train_batch_size=1,
|
24 |
save_steps=10_000,
|
25 |
save_total_limit=2,
|
26 |
)
|
27 |
|
28 |
-
# Create
|
29 |
trainer = Trainer(
|
30 |
model=model,
|
31 |
args=training_args,
|
32 |
-
train_dataset=
|
33 |
-
eval_dataset=
|
34 |
)
|
35 |
|
36 |
-
#
|
37 |
trainer.train()
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
output = pipe_flan(input)
|
45 |
-
return {"output": output[0]["generated_text"]}
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
49 |
@app.get("/")
|
50 |
def index() -> FileResponse:
|
51 |
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
from fastapi.responses import FileResponse
|
4 |
+
from transformers import BertTokenizer, BertForMaskedLM, Trainer, TrainingArguments
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
# Initialize the tokenizer and model
|
9 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
10 |
+
model = BertForMaskedLM.from_pretrained("bert-base-uncased")
|
11 |
|
12 |
+
# Prepare the training data
|
13 |
with open("cyberpunk_lore.txt", "r") as f:
|
14 |
+
train_data = f.read()
|
15 |
+
train_data = train_data.split("\n")
|
16 |
+
train_data = [tokenizer.encode(text, return_tensors="pt") for text in train_data]
|
17 |
|
18 |
+
# Define the training arguments
|
|
|
|
|
|
|
19 |
training_args = TrainingArguments(
|
20 |
+
output_dir="./results",
|
21 |
+
per_device_train_batch_size=16,
|
|
|
|
|
22 |
save_steps=10_000,
|
23 |
save_total_limit=2,
|
24 |
)
|
25 |
|
26 |
+
# Create the trainer
|
27 |
trainer = Trainer(
|
28 |
model=model,
|
29 |
args=training_args,
|
30 |
+
train_dataset=train_data,
|
31 |
+
eval_dataset=train_data,
|
32 |
)
|
33 |
|
34 |
+
# Start the training
|
35 |
trainer.train()
|
36 |
|
37 |
+
# Save the fine-tuned model
|
38 |
+
trainer.save_model('./results')
|
39 |
|
40 |
+
# Load the fine-tuned model
|
41 |
+
model = trainer.get_model()
|
|
|
|
|
42 |
|
43 |
+
# Create the inference endpoint
|
44 |
+
@app.post("/infer")
|
45 |
+
def infer(input: str):
|
46 |
+
input_ids = tokenizer.encode(input, return_tensors="pt")
|
47 |
+
output = model(input_ids)[0]
|
48 |
+
return {"output": output}
|
49 |
|
50 |
+
@app.get("/")
|
51 |
+
def index() -> FileResponse:
|
52 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
53 |
+
|
54 |
@app.get("/")
|
55 |
def index() -> FileResponse:
|
56 |
return FileResponse(path="/app/static/index.html", media_type="text/html")
|