File size: 3,676 Bytes
8fecbb9
 
 
0e2ce7b
8fecbb9
 
 
 
 
 
 
 
bcb11fe
0e2ce7b
 
 
 
8fecbb9
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb11fe
 
 
0e2ce7b
 
 
 
 
 
 
8d63c79
0e2ce7b
8fecbb9
 
 
 
 
 
 
e353795
bcb11fe
8fecbb9
 
 
 
 
 
 
257961a
8fecbb9
 
bcb11fe
8fecbb9
 
 
 
 
 
 
 
 
 
 
 
 
 
8d63c79
 
8fecbb9
bcb11fe
8d63c79
8fecbb9
 
1ca2b5c
bcb11fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import whisper
from pytube import YouTube
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration

class GradioInference():
    def __init__(self):
        self.sizes = list(whisper._MODELS.keys())
        self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.current_size = "base"
        self.loaded_model = whisper.load_model(self.current_size)
        self.yt = None
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        
        # Initialize VoiceLabT5 model and tokenizer
        self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
        self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")

    def __call__(self, link, lang, size):
        if self.yt is None:
            self.yt = YouTube(link)
        path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")

        if lang == "none":
            lang = None

        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size
        results = self.loaded_model.transcribe(path, language=lang)

        # Perform summarization on the transcription
        transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)

        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
        output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(',') if x.strip()]
        
        return results["text"], transcription_summary[0]["summary_text"], keywords

    def populate_metadata(self, link):
        self.yt = YouTube(link)
        return self.yt.thumbnail_url, self.yt.title


gio = GradioInference()
title = "Youtube Insights"
description = "Your AI-powered video analytics tool"

block = gr.Blocks()
with block:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <div>
            <h1>Youtube Insights 📹</h1>
          </div>
          <p style="margin-bottom: 10px; font-size: 94%">
            Your AI-powered video analytics tool
          </p>
        </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(equal_height=True):
                sz = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
                lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
            link = gr.Textbox(label="YouTube Link")
            title = gr.Label(label="Video Title")
            with gr.Row().style(equal_height=True):
                img = gr.Image(label="Thumbnail")
                text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
                summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
                keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
            with gr.Row().style(equal_height=True):
                btn = gr.Button("Get video insights")  # Updated button label
            btn.click(gio, inputs=[link, lang, sz], outputs=[text, summary, keywords])
            link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])

block.launch()