Spaces:
Runtime error
Runtime error
Update README.md
Browse files- detection_models/yolo_stamp/train.ipynb +0 -185
- detection_models/yolo_stamp/utils.py +0 -28
- requirements.txt +12 -5
detection_models/yolo_stamp/train.ipynb
DELETED
@@ -1,185 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"from model import *\n",
|
10 |
-
"from loss import *\n",
|
11 |
-
"from data import *\n",
|
12 |
-
"from torch import optim\n",
|
13 |
-
"from tqdm import tqdm\n",
|
14 |
-
"\n",
|
15 |
-
"import pytorch_lightning as pl\n",
|
16 |
-
"from torchmetrics.detection import MeanAveragePrecision\n",
|
17 |
-
"from pytorch_lightning.loggers import TensorBoardLogger"
|
18 |
-
]
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"cell_type": "code",
|
22 |
-
"execution_count": 2,
|
23 |
-
"metadata": {},
|
24 |
-
"outputs": [],
|
25 |
-
"source": [
|
26 |
-
"_, _, test_dataset = get_datasets()"
|
27 |
-
]
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"cell_type": "code",
|
31 |
-
"execution_count": 3,
|
32 |
-
"metadata": {},
|
33 |
-
"outputs": [],
|
34 |
-
"source": [
|
35 |
-
"class LitModel(pl.LightningModule):\n",
|
36 |
-
" def __init__(self):\n",
|
37 |
-
" super().__init__()\n",
|
38 |
-
" self.model = YOLOStamp()\n",
|
39 |
-
" self.criterion = YOLOLoss()\n",
|
40 |
-
" self.val_map = MeanAveragePrecision(box_format='xywh', iou_type='bbox')\n",
|
41 |
-
" \n",
|
42 |
-
" def forward(self, x):\n",
|
43 |
-
" return self.model(x)\n",
|
44 |
-
"\n",
|
45 |
-
" def configure_optimizers(self):\n",
|
46 |
-
" optimizer = optim.AdamW(self.parameters(), lr=1e-3)\n",
|
47 |
-
" # return optimizer\n",
|
48 |
-
" scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, 1000)\n",
|
49 |
-
" return {\"optimizer\": optimizer, \"lr_scheduler\": scheduler}\n",
|
50 |
-
"\n",
|
51 |
-
" def training_step(self, batch, batch_idx):\n",
|
52 |
-
" images, targets = batch\n",
|
53 |
-
" tensor_images = torch.stack(images)\n",
|
54 |
-
" tensor_targets = torch.stack(targets)\n",
|
55 |
-
" output = self.model(tensor_images)\n",
|
56 |
-
" loss = self.criterion(output, tensor_targets)\n",
|
57 |
-
" self.log(\"train_loss\", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)\n",
|
58 |
-
" return loss\n",
|
59 |
-
"\n",
|
60 |
-
" def validation_step(self, batch, batch_idx):\n",
|
61 |
-
" images, targets = batch\n",
|
62 |
-
" tensor_images = torch.stack(images)\n",
|
63 |
-
" tensor_targets = torch.stack(targets)\n",
|
64 |
-
" output = self.model(tensor_images)\n",
|
65 |
-
" loss = self.criterion(output, tensor_targets)\n",
|
66 |
-
" self.log(\"val_loss\", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)\n",
|
67 |
-
"\n",
|
68 |
-
" for i in range(len(images)):\n",
|
69 |
-
" boxes = output_tensor_to_boxes(output[i].detach().cpu())\n",
|
70 |
-
" boxes = nonmax_suppression(boxes)\n",
|
71 |
-
" target = target_tensor_to_boxes(targets[i])[::BOX]\n",
|
72 |
-
" if not boxes:\n",
|
73 |
-
" boxes = torch.zeros((1, 5))\n",
|
74 |
-
" preds = [\n",
|
75 |
-
" dict(\n",
|
76 |
-
" boxes=torch.tensor(boxes)[:, :4].clone().detach(),\n",
|
77 |
-
" scores=torch.tensor(boxes)[:, 4].clone().detach(),\n",
|
78 |
-
" labels=torch.zeros(len(boxes)),\n",
|
79 |
-
" )\n",
|
80 |
-
" ]\n",
|
81 |
-
" target = [\n",
|
82 |
-
" dict(\n",
|
83 |
-
" boxes=torch.tensor(target),\n",
|
84 |
-
" labels=torch.zeros(len(target)),\n",
|
85 |
-
" )\n",
|
86 |
-
" ]\n",
|
87 |
-
" self.val_map.update(preds, target)\n",
|
88 |
-
" \n",
|
89 |
-
" def on_validation_epoch_end(self):\n",
|
90 |
-
" mAPs = {\"val_\" + k: v for k, v in self.val_map.compute().items()}\n",
|
91 |
-
" mAPs_per_class = mAPs.pop(\"val_map_per_class\")\n",
|
92 |
-
" mARs_per_class = mAPs.pop(\"val_mar_100_per_class\")\n",
|
93 |
-
" self.log_dict(mAPs)\n",
|
94 |
-
" self.val_map.reset()\n",
|
95 |
-
"\n",
|
96 |
-
" image = test_dataset[randint(0, len(test_dataset) - 1)][0].to(self.device)\n",
|
97 |
-
" output = self.model(image.unsqueeze(0))\n",
|
98 |
-
" boxes = output_tensor_to_boxes(output[0].detach().cpu())\n",
|
99 |
-
" boxes = nonmax_suppression(boxes)\n",
|
100 |
-
" img = image.permute(1, 2, 0).cpu().numpy()\n",
|
101 |
-
" img = visualize_bbox(img.copy(), boxes=boxes)\n",
|
102 |
-
" img = (255. * (img * np.array(STD) + np.array(MEAN))).astype(np.uint8)\n",
|
103 |
-
" \n",
|
104 |
-
" self.logger.experiment.add_image(\"detected boxes\", torch.tensor(img).permute(2, 0, 1), self.current_epoch)\n"
|
105 |
-
]
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"cell_type": "code",
|
109 |
-
"execution_count": 4,
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [],
|
112 |
-
"source": [
|
113 |
-
"litmodel = LitModel()"
|
114 |
-
]
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"cell_type": "code",
|
118 |
-
"execution_count": 5,
|
119 |
-
"metadata": {},
|
120 |
-
"outputs": [],
|
121 |
-
"source": [
|
122 |
-
"logger = TensorBoardLogger(\"detection_logs\")"
|
123 |
-
]
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"cell_type": "code",
|
127 |
-
"execution_count": 7,
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [],
|
130 |
-
"source": [
|
131 |
-
"epochs = 100"
|
132 |
-
]
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"cell_type": "code",
|
136 |
-
"execution_count": 8,
|
137 |
-
"metadata": {},
|
138 |
-
"outputs": [],
|
139 |
-
"source": [
|
140 |
-
"train_loader, val_loader = get_loaders(batch_size=8)"
|
141 |
-
]
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"cell_type": "code",
|
145 |
-
"execution_count": null,
|
146 |
-
"metadata": {},
|
147 |
-
"outputs": [],
|
148 |
-
"source": [
|
149 |
-
"trainer = pl.Trainer(accelerator=\"auto\", max_epochs=epochs, logger=logger)\n",
|
150 |
-
"trainer.fit(model=litmodel, train_dataloaders=train_loader, val_dataloaders=val_loader)"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": null,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
-
"source": [
|
159 |
-
"%tensorboard"
|
160 |
-
]
|
161 |
-
}
|
162 |
-
],
|
163 |
-
"metadata": {
|
164 |
-
"kernelspec": {
|
165 |
-
"display_name": "Python 3",
|
166 |
-
"language": "python",
|
167 |
-
"name": "python3"
|
168 |
-
},
|
169 |
-
"language_info": {
|
170 |
-
"codemirror_mode": {
|
171 |
-
"name": "ipython",
|
172 |
-
"version": 3
|
173 |
-
},
|
174 |
-
"file_extension": ".py",
|
175 |
-
"mimetype": "text/x-python",
|
176 |
-
"name": "python",
|
177 |
-
"nbconvert_exporter": "python",
|
178 |
-
"pygments_lexer": "ipython3",
|
179 |
-
"version": "3.9.0"
|
180 |
-
},
|
181 |
-
"orig_nbformat": 4
|
182 |
-
},
|
183 |
-
"nbformat": 4,
|
184 |
-
"nbformat_minor": 2
|
185 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
detection_models/yolo_stamp/utils.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import torch
|
2 |
-
import cv2
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
from pathlib import Path
|
@@ -53,33 +52,6 @@ def plot_normalized_img(img, std=STD, mean=MEAN, size=(7,7)):
|
|
53 |
plt.figure(figsize=size)
|
54 |
plt.imshow((255. * (img * std + mean)).astype(np.uint))
|
55 |
plt.show()
|
56 |
-
|
57 |
-
|
58 |
-
def visualize_bbox(img, boxes, thickness=2, color=BOX_COLOR, draw_center=True):
|
59 |
-
"""
|
60 |
-
Draws boxes on the given image.
|
61 |
-
|
62 |
-
Arguments:
|
63 |
-
img -- torch.Tensor of shape (3, W, H) or numpy.ndarray of shape (W, H, 3)
|
64 |
-
boxes -- list of shape (None, 5)
|
65 |
-
thickness -- number specifying the thickness of box border
|
66 |
-
color -- RGB tuple of shape (3,) specifying the color of boxes
|
67 |
-
draw_center -- boolean specifying whether to draw center or not
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
img_copy -- numpy.ndarray of shape(W, H, 3) containing image with bouning boxes
|
71 |
-
"""
|
72 |
-
img_copy = img.cpu().permute(1,2,0).numpy() if isinstance(img, torch.Tensor) else img.copy()
|
73 |
-
for box in boxes:
|
74 |
-
x,y,w,h = int(box[0]), int(box[1]), int(box[2]), int(box[3])
|
75 |
-
img_copy = cv2.rectangle(
|
76 |
-
img_copy,
|
77 |
-
(x,y),(x+w, y+h),
|
78 |
-
color, thickness)
|
79 |
-
if draw_center:
|
80 |
-
center = (x+w//2, y+h//2)
|
81 |
-
img_copy = cv2.circle(img_copy, center=center, radius=3, color=(0,255,0), thickness=2)
|
82 |
-
return img_copy
|
83 |
|
84 |
|
85 |
def read_data(annotations=Path(ANNOTATIONS_PATH)):
|
|
|
1 |
import torch
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from pathlib import Path
|
|
|
52 |
plt.figure(figsize=size)
|
53 |
plt.imshow((255. * (img * std + mean)).astype(np.uint))
|
54 |
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
def read_data(annotations=Path(ANNOTATIONS_PATH)):
|
requirements.txt
CHANGED
@@ -1,7 +1,14 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
4 |
matplotlib==3.6.0
|
5 |
-
|
6 |
pandas==1.5.1
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
albumentations==1.3.0
|
2 |
+
click==8.0.4
|
3 |
+
gradio==3.36.1
|
4 |
+
huggingface_hub==0.14.1
|
5 |
matplotlib==3.6.0
|
6 |
+
numpy==1.23.4
|
7 |
pandas==1.5.1
|
8 |
+
Pillow==9.3.0
|
9 |
+
Pillow==10.0.0
|
10 |
+
pytorch_lightning==2.0.2
|
11 |
+
scikit_learn==1.1.3
|
12 |
+
torch==1.12.0+cu116
|
13 |
+
torchvision==0.13.0+cu116
|
14 |
+
tqdm==4.64.1
|