stable-fast-3d / run.py
jammmmm's picture
Update to latest inference code
77d8010
import argparse
import os
from contextlib import nullcontext
import rembg
import torch
from PIL import Image
from tqdm import tqdm
from sf3d.system import SF3D
from sf3d.utils import get_device, remove_background, resize_foreground
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"image", type=str, nargs="+", help="Path to input image(s) or folder."
)
parser.add_argument(
"--device",
default=get_device(),
type=str,
help=f"Device to use. If no CUDA/MPS-compatible device is found, the baking will fail. Default: '{get_device()}'",
)
parser.add_argument(
"--pretrained-model",
default="stabilityai/stable-fast-3d",
type=str,
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/stable-fast-3d'",
)
parser.add_argument(
"--foreground-ratio",
default=0.85,
type=float,
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
)
parser.add_argument(
"--output-dir",
default="output/",
type=str,
help="Output directory to save the results. Default: 'output/'",
)
parser.add_argument(
"--texture-resolution",
default=1024,
type=int,
help="Texture atlas resolution. Default: 1024",
)
parser.add_argument(
"--remesh_option",
choices=["none", "triangle", "quad"],
default="none",
help="Remeshing option",
)
parser.add_argument(
"--target_vertex_count",
type=int,
help="Target vertex count. -1 does not perform a reduction.",
default=-1,
)
parser.add_argument(
"--batch_size", default=1, type=int, help="Batch size for inference"
)
args = parser.parse_args()
# Ensure args.device contains cuda
devices = ["cuda", "mps", "cpu"]
if not any(args.device in device for device in devices):
raise ValueError("Invalid device. Use cuda, mps or cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
device = args.device
if not (torch.cuda.is_available() or torch.backends.mps.is_available()):
device = "cpu"
print("Device used: ", device)
model = SF3D.from_pretrained(
args.pretrained_model,
config_name="config.yaml",
weight_name="model.safetensors",
)
model.to(device)
model.eval()
rembg_session = rembg.new_session()
images = []
idx = 0
for image_path in args.image:
def handle_image(image_path, idx):
image = remove_background(
Image.open(image_path).convert("RGBA"), rembg_session
)
image = resize_foreground(image, args.foreground_ratio)
os.makedirs(os.path.join(output_dir, str(idx)), exist_ok=True)
image.save(os.path.join(output_dir, str(idx), "input.png"))
images.append(image)
if os.path.isdir(image_path):
image_paths = [
os.path.join(image_path, f)
for f in os.listdir(image_path)
if f.endswith((".png", ".jpg", ".jpeg"))
]
for image_path in image_paths:
handle_image(image_path, idx)
idx += 1
else:
handle_image(image_path, idx)
idx += 1
for i in tqdm(range(0, len(images), args.batch_size)):
image = images[i : i + args.batch_size]
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
with torch.autocast(
device_type=device, dtype=torch.bfloat16
) if "cuda" in device else nullcontext():
mesh, glob_dict = model.run_image(
image,
bake_resolution=args.texture_resolution,
remesh=args.remesh_option,
vertex_count=args.target_vertex_count,
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
if len(image) == 1:
out_mesh_path = os.path.join(output_dir, str(i), "mesh.glb")
mesh.export(out_mesh_path, include_normals=True)
else:
for j in range(len(mesh)):
out_mesh_path = os.path.join(output_dir, str(i + j), "mesh.glb")
mesh[j].export(out_mesh_path, include_normals=True)