srijaydeshpande commited on
Commit
9b2a575
·
verified ·
1 Parent(s): a30da3a

Update app_1.py

Browse files
Files changed (1) hide show
  1. app_1.py +34 -9
app_1.py CHANGED
@@ -8,6 +8,20 @@ import tqdm
8
  from label_studio_sdk.client import Client
9
  from getpass import getpass
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  class ModelPredictor:
12
  def __init__(self, model_name, file_to_predict_on, data_dir = "./data/preprocessed_data/", model_dir="./models/"):
13
  """
@@ -138,14 +152,7 @@ model_path = BASE_DIR / "models"
138
  models = [model.name for model in model_path.iterdir() if model.is_dir()]
139
 
140
  for model_name in models:
141
- # Predict on the validation set example
142
- predictor = ModelPredictor(model_name, "validation")
143
- predictor.predict()
144
-
145
- # Predict on the training set example
146
- predictor = ModelPredictor(model_name, "training")
147
- predictor.predict()
148
-
149
  # Predict on the unlabeled set example
150
  predictor = ModelPredictor(model_name, "unlabeled")
151
  predictor.predict()
@@ -333,4 +340,22 @@ def import_annotations_existing_tasks(predictions: List[Dict], label_studio_proj
333
  print(f"Importing annotations to project {label_studio_project_id}")
334
  print(project.create_predictions(prediction_for_this_project))
335
 
336
- return "Annotations imported successfully."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  from label_studio_sdk.client import Client
9
  from getpass import getpass
10
 
11
+ from huggingface_hub import login
12
+
13
+ login(token = os.getenv('HF_TOKEN'))
14
+
15
+ model_id = "RTLucassen/flan-t5-large-finetuned-melanocytic-lesion-reports"
16
+
17
+ local_dir = "models"
18
+
19
+ hf_hub_download(
20
+ repo_id=repo_id,
21
+ filename=model_id,
22
+ local_dir = local_dir
23
+ )
24
+
25
  class ModelPredictor:
26
  def __init__(self, model_name, file_to_predict_on, data_dir = "./data/preprocessed_data/", model_dir="./models/"):
27
  """
 
152
  models = [model.name for model in model_path.iterdir() if model.is_dir()]
153
 
154
  for model_name in models:
155
+
 
 
 
 
 
 
 
156
  # Predict on the unlabeled set example
157
  predictor = ModelPredictor(model_name, "unlabeled")
158
  predictor.predict()
 
340
  print(f"Importing annotations to project {label_studio_project_id}")
341
  print(project.create_predictions(prediction_for_this_project))
342
 
343
+ return "Annotations imported successfully."
344
+
345
+ def segment_report(file):
346
+
347
+ return ''
348
+
349
+
350
+ input_files = gr.File()
351
+
352
+ iface = gr.Interface(
353
+ fn=segment_report,
354
+ inputs=input_files,
355
+ outputs=['text'],
356
+ title='Segment Reports',
357
+ description="This application helps segmenting medical report into meaningful fragments",
358
+ theme=gr.themes.Soft(),
359
+ )
360
+
361
+ iface.launch()