""" Script includes functions to compute evaluation metrics """ import numpy as np from sklearn.metrics import roc_auc_score # Function to compute Dice index score for a tissue region indicated by label def compute_dice(pred, gt, label): pred = pred.flatten() gt = gt.flatten() pred[pred!=label] = 0 pred[pred==label] = 1 gt[gt != label] = 0 gt[gt == label] = 1 pred_pixels = np.sum(pred) gt_pixels = np.sum(gt) denom = (pred_pixels + gt_pixels) if (gt_pixels == 0): return -1 return np.sum(pred[gt == 1]) * 2.0 / denom # Function to compute AUC-ROC for a tissue region indicated by label def compute_auc_roc(pred, gt, label): pred_binary = np.where(pred == label, 1, 0) gt_binary = np.where(gt == label, 1, 0) if (np.sum(gt_binary) == 0 or np.all(gt_binary == 1) or np.all(pred_binary == 1)): return -1 if (np.sum(pred_binary) == 0): return 0 pred_flat = pred_binary.flatten() gt_flat = gt_binary.flatten() auc_roc = roc_auc_score(gt_flat, pred_flat) return auc_roc # Function to compute Accuracy for a tissue region indicated by label def compute_accuracy_metrics(pred, gt): correct_predictions = np.sum(pred == gt) overall_count = pred.size return correct_predictions, overall_count