Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
import json | |
import os | |
import pprint | |
import re | |
from datetime import datetime, timezone | |
import click | |
from colorama import Fore | |
from huggingface_hub import HfApi, snapshot_download | |
EVAL_REQUESTS_PATH = "eval-queue" | |
QUEUE_REPO = "open-llm-leaderboard/requests" | |
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ") | |
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned") | |
weight_types = ("Original", "Delta", "Adapter") | |
def get_model_size(model_info, precision: str): | |
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)") | |
try: | |
model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
except AttributeError: | |
try: | |
size_match = re.search(size_pattern, model_info.modelId.lower()) | |
model_size = size_match.group(0) | |
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) | |
except AttributeError: | |
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | |
model_size = size_factor * model_size | |
return model_size | |
def main(): | |
api = HfApi() | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset") | |
model_name = click.prompt("Enter model name") | |
revision = click.prompt("Enter revision", default="main") | |
precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions)) | |
model_type = click.prompt("Enter model type", type=click.Choice(model_types)) | |
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types)) | |
base_model = click.prompt("Enter base model", default="") | |
status = click.prompt("Enter status", default="FINISHED") | |
try: | |
model_info = api.model_info(repo_id=model_name, revision=revision) | |
except Exception as e: | |
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}") | |
return 1 | |
model_size = get_model_size(model_info=model_info, precision=precision) | |
try: | |
license = model_info.cardData["license"] | |
except Exception: | |
license = "?" | |
eval_entry = { | |
"model": model_name, | |
"base_model": base_model, | |
"revision": revision, | |
"private": False, | |
"precision": precision, | |
"weight_type": weight_type, | |
"status": status, | |
"submitted_time": current_time, | |
"model_type": model_type, | |
"likes": model_info.likes, | |
"params": model_size, | |
"license": license, | |
} | |
user_name = "" | |
model_path = model_name | |
if "/" in model_name: | |
user_name = model_name.split("/")[0] | |
model_path = model_name.split("/")[1] | |
pprint.pprint(eval_entry) | |
if click.confirm("Do you want to continue? This request file will be pushed to the hub"): | |
click.echo("continuing...") | |
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
os.makedirs(out_dir, exist_ok=True) | |
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
api.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model_name} to eval queue", | |
) | |
else: | |
click.echo("aborting...") | |
if __name__ == "__main__": | |
main() | |