import os import pickle import tempfile import gradio as gr from tqdm import tqdm from app.utils import ( create_input_instruction, format_prediction_ouptut, remove_temp_dir, display_sentiment_score_table, sentiment_flow_plot, sentiment_intensity_analysis, EXAMPLE_CONVERSATIONS, label_analysis, ) from fairseq.data.data_utils import collate_tokens import sys sys.path.insert(0, "../") # neccesary to load modules outside of app from app import roberta, comet, COSMIC_MODEL, cosmic_args from preprocessing import preprocess from preprocessing.preprocess import decode_numeric_label, decode_speaker_role from Model.COSMIC.erc_training.predict_epik import predict, get_valid_dataloader def cosmic_preprocess(input, dir="."): result = preprocess.process_user_input(input) if not result["success"]: raise gr.Error(result["message"]) data = result["data"] # processed the data and turn it into a csv file output_csv_path = os.path.join(dir, "epik.csv") grouped_df = preprocess.preapre_csv(data, output_csv_path, with_label=False) # convert the csv to pickle file of speakers, labels, sentences pickle_dest = os.path.join(dir, "epik.pkl") preprocess.convert_to_pickle( source=output_csv_path, dest=pickle_dest, index_col="ConversationId", list_type_columns=[ "Text", "ParticipantRoleEncoded", "LabelNumeric", ], order=[ "ParticipantRoleEncoded", "LabelNumeric", "Text", ], exclude=["ParticipantRole"], ) # split the id for prediction, we'll put these in validation ids preprocess.split_and_save_ids( grouped_df["ConversationId"].to_list(), 0, 0, 1, dir=dir ) # add ids into the pickle files preprocess.merge_pkl_with_ids( pickle_src=pickle_dest, ids_files=["train_set.txt", "test_set.txt", "validation_set.txt"], dir=dir, ) # generate the sentences pickle file sentences_pkl_path = os.path.join(dir, "epik_sentences.pkl") preprocess.convert_to_pickle( source=output_csv_path, dest=sentences_pkl_path, index_col="ConversationId", list_type_columns=["Text"], exclude=[ "ParticipantRole", "ParticipantRoleEncoded", "LabelNumeric", ], ) return pickle_dest, sentences_pkl_path def cosmic_roberta_extract(path, dest_dir="."): # load the feature from file at path speakers, labels, sentences, train_ids, test_ids, valid_ids = pickle.load( open(path, "rb") ) roberta1, roberta2, roberta3, roberta4 = {}, {}, {}, {} all_ids = train_ids + test_ids + valid_ids for i in tqdm(range(len(all_ids))): item = all_ids[i] sent = sentences[item] sent = [s.encode("ascii", errors="ignore").decode("utf-8") for s in sent] batch = collate_tokens([roberta.encode(s) for s in sent], pad_idx=1) feat = roberta.extract_features(batch, return_all_hiddens=True) roberta1[item] = [row for row in feat[-1][:, 0, :].detach().numpy()] roberta2[item] = [row for row in feat[-2][:, 0, :].detach().numpy()] roberta3[item] = [row for row in feat[-3][:, 0, :].detach().numpy()] roberta4[item] = [row for row in feat[-4][:, 0, :].detach().numpy()] roberta_feature_path = os.path.join(dest_dir, "epik_features_roberta.pkl") pickle.dump( [ speakers, labels, roberta1, roberta2, roberta3, roberta4, sentences, train_ids, test_ids, valid_ids, ], open(roberta_feature_path, "wb"), ) return roberta_feature_path def cosmic_comet_extract(path, dir="."): print("Extracting features in", path) sentences = pickle.load(open(path, "rb")) feaures = comet.extract(sentences) comet_feature_path = os.path.join(dir, "epik_features_comet.pkl") pickle.dump(feaures, open(comet_feature_path, "wb")) return comet_feature_path def cosmic_classifier(input): # create a temporary directory for the input data temp_dir = tempfile.mkdtemp(dir=os.getcwd(), prefix="temp") epik_path, epik_sentences_path = cosmic_preprocess(input, temp_dir) roberta_path = cosmic_roberta_extract(epik_path, temp_dir) comet_path = cosmic_comet_extract(epik_sentences_path, temp_dir) # use cosmic model to make predictions data_loader, ids = get_valid_dataloader(roberta_path, comet_path) predictions = predict(COSMIC_MODEL, data_loader, cosmic_args) speakers, _, sentences, _, _, valid_ids = pickle.load(open(epik_path, "rb")) # Assuming that there's only one conversation conv_id = ids[0] speaker_roles = [ decode_speaker_role(numeric_role) for numeric_role in speakers[conv_id] ] labels = [decode_numeric_label(pred) for pred in predictions[0]] output = format_prediction_ouptut(speaker_roles, sentences[conv_id], labels) print() print("======= Removing Temporary Directory =======") remove_temp_dir(temp_dir) return output def cosmic_ui(): with gr.Blocks() as cosmic_model: gr.Markdown( """ # COSMIC COSMIC is a popular model for predicting sentiment labels using the entire context of the conversation. In other words, it analyzes the previous messages to predict the sentiment label for the current message.
The model was adopted from this [repo](https://github.com/declare-lab/conv-emotion.git), implemented based on this research [paper](https://arxiv.org/pdf/2010.02795.pdf). ```bash COSMIC: COmmonSense knowledge for eMotion Identification in Conversations. D. Ghosal, N. Majumder, A. Gelbukh, R. Mihalcea, & S. Poria. Findings of EMNLP 2020. ``` """ ) create_input_instruction() with gr.Row(): with gr.Column(): example_dropdown = gr.Dropdown( choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()), value="-- Not Selected --", label="Select an example", ) gr.Markdown('

--- OR ---

') conversation_input = gr.TextArea( value="", label="Input you conversation", placeholder="Plese input your conversation here", lines=15, max_lines=15, ) def on_example_change(input): if input in EXAMPLE_CONVERSATIONS: return EXAMPLE_CONVERSATIONS[input] return "" example_dropdown.input( on_example_change, inputs=example_dropdown, outputs=conversation_input, ) with gr.Column(): output = gr.Textbox( value="", label="Predicted Sentiment Labels", lines=22, max_lines=22, interactive=False, ) submit_btn = gr.Button(value="Submit") submit_btn.click(cosmic_classifier, conversation_input, output) # reset the output whenever a change in the input is detected conversation_input.change(lambda x: "", conversation_input, output) gr.Markdown("# Analysis of Labels") with gr.Row(): with gr.Column(scale=1): gr.Markdown( """ Frequency Analysis of Labels One key aspect of our analysis involves examining the frequency distribution of labels assigned to different parts of the conversation. This includes tracking the occurrence of labels such as "Interest," "Curiosity," "Confused," "Openness," and "Acceptance." The resulting distribution provides insights into the prevalence of various sentiments during the interaction. Word Cloud Visualization In addition to label frequency, we employ word cloud visualization to depict the prominent terms in the input conversations. This visual representation highlights the most frequently used words, shedding light on the key themes and topics discussed. """ ) with gr.Column(scale=3): labels_plot = gr.Plot(label="Analysis of Labels Plot") with gr.Column(scale=3): wordcloud_plot = gr.Plot(label="Analysis of Labels Plot") labels_btn = gr.Button(value="Plot Label Analysis") labels_btn.click(label_analysis, inputs=[output], outputs=[labels_plot,wordcloud_plot]) gr.Markdown("# Sentiment Flow Plot") with gr.Row(): with gr.Column(scale=1): display_sentiment_score_table() with gr.Column(scale=2): plot_box = gr.Plot(label="Analysis Plot") plot_btn = gr.Button(value="Plot Sentiment Flow") plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box]) gr.Markdown("# Sentiment Intensity Analysis") with gr.Row(): with gr.Column(scale=1): gr.Markdown( """ How accurate is the model? How good are the labels? These are some questions that we may have at this point, and we need to look at different metrics to assess the performance of our models. One of them is sentiment intensity which measures how strong a sentiment is expressed in the text. This can be done by using NLTK's `SentimentIntensityAnalyzer` which analyzes the connotation of the words in the text and suggests whether a text is positive (with score > 0) or negative (score < 0) and at what degree the text is positive or negative. The graph to the right illustrates the change in sentiment intensity of the agent and visitor across the course of the conversation. Note: While NLTK's SentimentIntensityAnalyzer offers valuable insights, it is primarily trained on social media data like Twitter. Its performance might falter for lengthy or intricate messages. However, it remains a useful tool for gaining perspective on sentiment in conversations. """ ) with gr.Column(scale=2): intensity_plot = gr.LinePlot() intensity_plot_btn = gr.Button(value="Plot Sentiment Intensity") intensity_plot_btn.click( sentiment_intensity_analysis, inputs=[conversation_input], outputs=[intensity_plot], ) # reset all outputs whenever a change in the input is detected conversation_input.change( lambda x: ("", None, None, None, None), conversation_input, outputs=[output, labels_plot, wordcloud_plot, plot_box, intensity_plot], ) return cosmic_model