Spaces:
Sleeping
Sleeping
jh000107
commited on
Commit
·
e26ce64
1
Parent(s):
4446131
app final
Browse files
app.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -11,14 +11,14 @@
|
|
11 |
"from openai import OpenAI\n",
|
12 |
"from dotenv import load_dotenv, find_dotenv\n",
|
13 |
"\n",
|
14 |
-
"%matplotlib inline\n",
|
15 |
"import re\n",
|
16 |
-
"import matplotlib.pyplot as plt"
|
|
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
{
|
71 |
"cell_type": "code",
|
72 |
-
"execution_count":
|
73 |
"metadata": {},
|
74 |
"outputs": [],
|
75 |
"source": [
|
@@ -168,7 +168,7 @@
|
|
168 |
},
|
169 |
{
|
170 |
"cell_type": "code",
|
171 |
-
"execution_count":
|
172 |
"metadata": {},
|
173 |
"outputs": [],
|
174 |
"source": [
|
@@ -297,23 +297,28 @@
|
|
297 |
" visitor_Y_converted = [grouped_sentiments[visitor_Y[i]] for i in range(num_utterances)]\n",
|
298 |
" agent_Y_converted = [grouped_sentiments[agent_Y[i]] for i in range(num_utterances)]\n",
|
299 |
"\n",
|
300 |
-
" plt.style.use('seaborn')\n",
|
301 |
"\n",
|
302 |
" fig, ax = plt.subplots()\n",
|
303 |
-
"\n",
|
304 |
"\n",
|
305 |
" ax.plot(X, visitor_Y_converted, label='Visitor', color='blue', marker='o')\n",
|
306 |
" ax.plot(X, agent_Y_converted, label='Agent', color='green', marker='o')\n",
|
307 |
"\n",
|
308 |
-
" plt.
|
309 |
-
"
|
310 |
-
"
|
|
|
311 |
" \n",
|
312 |
-
"
|
313 |
-
"
|
|
|
|
|
|
|
|
|
|
|
314 |
"\n",
|
315 |
-
" plt.xlabel('
|
316 |
-
" plt.ylabel('
|
317 |
" plt.title('Sentiment Flow Plot')\n",
|
318 |
"\n",
|
319 |
" plt.close(fig)\n",
|
@@ -325,16 +330,37 @@
|
|
325 |
" return response.choices[0].message.content, fig\n",
|
326 |
"\n",
|
327 |
"def set_key(key):\n",
|
328 |
-
"
|
329 |
-
"
|
330 |
-
" \n",
|
331 |
-
" load_dotenv(find_dotenv(\"_.env\"), override=True)\n",
|
332 |
" return"
|
333 |
]
|
334 |
},
|
335 |
{
|
336 |
"cell_type": "code",
|
337 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
"metadata": {},
|
339 |
"outputs": [],
|
340 |
"source": [
|
@@ -343,36 +369,68 @@
|
|
343 |
},
|
344 |
{
|
345 |
"cell_type": "code",
|
346 |
-
"execution_count":
|
347 |
"metadata": {},
|
348 |
"outputs": [],
|
349 |
"source": [
|
350 |
"with gr.Blocks() as gpt_analysis:\n",
|
351 |
-
" gr.Markdown(\"## Conversation Analysis\")\n",
|
352 |
" gr.Markdown(\n",
|
353 |
" \"This is a custom GPT model designed to provide \\\n",
|
354 |
" a report on overall sentiment flow of the conversation on the \\\n",
|
355 |
-
" volunteer's perspective.<br />
|
356 |
" api_key = gr.Textbox(label=\"Key\", lines=1)\n",
|
357 |
" btn_key = gr.Button(value=\"Submit Key\")\n",
|
358 |
" btn_key.click(set_key, inputs=api_key)\n",
|
359 |
-
"
|
|
|
|
|
|
|
|
|
360 |
" btn = gr.Button(value=\"Submit\")\n",
|
361 |
" with gr.Row():\n",
|
362 |
-
"
|
363 |
-
"
|
|
|
|
|
|
|
364 |
" \n",
|
365 |
" btn.click(get_completion, inputs=conversation, outputs=[output_box, plot_box])\n"
|
366 |
]
|
367 |
},
|
368 |
{
|
369 |
"cell_type": "code",
|
370 |
-
"execution_count":
|
371 |
"metadata": {},
|
372 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
"source": [
|
374 |
"gr.TabbedInterface([gpt_analysis], [\"GPT Anlysis\"]).launch(inline=False)"
|
375 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
}
|
377 |
],
|
378 |
"metadata": {
|
@@ -382,7 +440,15 @@
|
|
382 |
"name": "python3"
|
383 |
},
|
384 |
"language_info": {
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
"name": "python",
|
|
|
|
|
386 |
"version": "3.9.13"
|
387 |
}
|
388 |
},
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 28,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
11 |
"from openai import OpenAI\n",
|
12 |
"from dotenv import load_dotenv, find_dotenv\n",
|
13 |
"\n",
|
|
|
14 |
"import re\n",
|
15 |
+
"import matplotlib.pyplot as plt\n",
|
16 |
+
"import seaborn as sns"
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": 29,
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
|
|
69 |
},
|
70 |
{
|
71 |
"cell_type": "code",
|
72 |
+
"execution_count": 30,
|
73 |
"metadata": {},
|
74 |
"outputs": [],
|
75 |
"source": [
|
|
|
168 |
},
|
169 |
{
|
170 |
"cell_type": "code",
|
171 |
+
"execution_count": 65,
|
172 |
"metadata": {},
|
173 |
"outputs": [],
|
174 |
"source": [
|
|
|
297 |
" visitor_Y_converted = [grouped_sentiments[visitor_Y[i]] for i in range(num_utterances)]\n",
|
298 |
" agent_Y_converted = [grouped_sentiments[agent_Y[i]] for i in range(num_utterances)]\n",
|
299 |
"\n",
|
|
|
300 |
"\n",
|
301 |
" fig, ax = plt.subplots()\n",
|
302 |
+
" sns.set(style=\"whitegrid\")\n",
|
303 |
"\n",
|
304 |
" ax.plot(X, visitor_Y_converted, label='Visitor', color='blue', marker='o')\n",
|
305 |
" ax.plot(X, agent_Y_converted, label='Agent', color='green', marker='o')\n",
|
306 |
"\n",
|
307 |
+
" plt.legend(loc='upper left', bbox_to_anchor=(1,1))\n",
|
308 |
+
" plt.subplots_adjust(right=0.8)\n",
|
309 |
+
"\n",
|
310 |
+
" plt.yticks(ticks=[-3,-2,-1,0,1,2,3])\n",
|
311 |
" \n",
|
312 |
+
" # y_labels = {-3: 'Disapproval/Accusatory/Denial/Obscene', -2: 'Anxious/Confused\\nAnnoyed/Remorse', -1: 'Uninterested', 0: 'Greeting/None',\n",
|
313 |
+
" # 1: 'Informative', 2: 'Interest/Curiosity', 3: 'Acceptance/Openness'}\n",
|
314 |
+
" \n",
|
315 |
+
" # cell_text = [[label] for label in y_labels.values()]\n",
|
316 |
+
" # plt.table(cellText=cell_text, rowLabels=list(y_labels.keys()), loc='left')\n",
|
317 |
+
"\n",
|
318 |
+
" # plt.tick_params(axis='y', labelsize=10)\n",
|
319 |
"\n",
|
320 |
+
" plt.xlabel('Timestamp')\n",
|
321 |
+
" plt.ylabel('Sentiment Score')\n",
|
322 |
" plt.title('Sentiment Flow Plot')\n",
|
323 |
"\n",
|
324 |
" plt.close(fig)\n",
|
|
|
330 |
" return response.choices[0].message.content, fig\n",
|
331 |
"\n",
|
332 |
"def set_key(key):\n",
|
333 |
+
" os.environ['OPENAI_API_KEY'] = key\n",
|
334 |
+
" load_dotenv()\n",
|
|
|
|
|
335 |
" return"
|
336 |
]
|
337 |
},
|
338 |
{
|
339 |
"cell_type": "code",
|
340 |
+
"execution_count": 51,
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [],
|
343 |
+
"source": [
|
344 |
+
"aligned_markdown_table = \"\"\"\n",
|
345 |
+
"<div style='text-align: right; font-size: small;'>\n",
|
346 |
+
"\n",
|
347 |
+
"| Sentiment Score | Sentiment Label |\n",
|
348 |
+
"|:---------------:|:---------------:|\n",
|
349 |
+
"| 3 | Acceptance, Openness |\n",
|
350 |
+
"| 2 | Interest, Curiosity |\n",
|
351 |
+
"| 1 | Informative |\n",
|
352 |
+
"| 0 | Greeting |\n",
|
353 |
+
"| -1 | Uninterested |\n",
|
354 |
+
"| -2 | Anxious, Confused, Annoyed, Remorse |\n",
|
355 |
+
"| -3 | Disapproval, Accusatory, Denial, Obscene |\n",
|
356 |
+
"\n",
|
357 |
+
"</div>\n",
|
358 |
+
"\"\"\""
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 32,
|
364 |
"metadata": {},
|
365 |
"outputs": [],
|
366 |
"source": [
|
|
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
+
"execution_count": 66,
|
373 |
"metadata": {},
|
374 |
"outputs": [],
|
375 |
"source": [
|
376 |
"with gr.Blocks() as gpt_analysis:\n",
|
377 |
+
" gr.Markdown(\"## Conversation Sentiment Analysis Report\")\n",
|
378 |
" gr.Markdown(\n",
|
379 |
" \"This is a custom GPT model designed to provide \\\n",
|
380 |
" a report on overall sentiment flow of the conversation on the \\\n",
|
381 |
+
" volunteer's perspective. It also provies a live plot analysis of sentiments throughout the conversation.<br /><br />Click on them and submit them to the model to see how it works.\")\n",
|
382 |
" api_key = gr.Textbox(label=\"Key\", lines=1)\n",
|
383 |
" btn_key = gr.Button(value=\"Submit Key\")\n",
|
384 |
" btn_key.click(set_key, inputs=api_key)\n",
|
385 |
+
" with gr.Row():\n",
|
386 |
+
" with gr.Column():\n",
|
387 |
+
" conversation = gr.Textbox(label=\"Input\", lines=4)\n",
|
388 |
+
" with gr.Column():\n",
|
389 |
+
" output_box = gr.Textbox(value=\"\", label=\"Output\",lines=4)\n",
|
390 |
" btn = gr.Button(value=\"Submit\")\n",
|
391 |
" with gr.Row():\n",
|
392 |
+
" with gr.Column(scale=2):\n",
|
393 |
+
" gr.Markdown(aligned_markdown_table)\n",
|
394 |
+
" with gr.Column(scale=2):\n",
|
395 |
+
" plot_box = gr.Plot(label=\"Analysis Plot\")\n",
|
396 |
+
"\n",
|
397 |
" \n",
|
398 |
" btn.click(get_completion, inputs=conversation, outputs=[output_box, plot_box])\n"
|
399 |
]
|
400 |
},
|
401 |
{
|
402 |
"cell_type": "code",
|
403 |
+
"execution_count": 67,
|
404 |
"metadata": {},
|
405 |
+
"outputs": [
|
406 |
+
{
|
407 |
+
"name": "stdout",
|
408 |
+
"output_type": "stream",
|
409 |
+
"text": [
|
410 |
+
"Running on local URL: http://127.0.0.1:7883\n",
|
411 |
+
"\n",
|
412 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"data": {
|
417 |
+
"text/plain": []
|
418 |
+
},
|
419 |
+
"execution_count": 67,
|
420 |
+
"metadata": {},
|
421 |
+
"output_type": "execute_result"
|
422 |
+
}
|
423 |
+
],
|
424 |
"source": [
|
425 |
"gr.TabbedInterface([gpt_analysis], [\"GPT Anlysis\"]).launch(inline=False)"
|
426 |
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": null,
|
431 |
+
"metadata": {},
|
432 |
+
"outputs": [],
|
433 |
+
"source": []
|
434 |
}
|
435 |
],
|
436 |
"metadata": {
|
|
|
440 |
"name": "python3"
|
441 |
},
|
442 |
"language_info": {
|
443 |
+
"codemirror_mode": {
|
444 |
+
"name": "ipython",
|
445 |
+
"version": 3
|
446 |
+
},
|
447 |
+
"file_extension": ".py",
|
448 |
+
"mimetype": "text/x-python",
|
449 |
"name": "python",
|
450 |
+
"nbconvert_exporter": "python",
|
451 |
+
"pygments_lexer": "ipython3",
|
452 |
"version": "3.9.13"
|
453 |
}
|
454 |
},
|
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
-
import openai
|
|
|
3 |
from openai import OpenAI
|
4 |
-
from dotenv import load_dotenv
|
5 |
|
6 |
import re
|
7 |
import matplotlib.pyplot as plt
|
@@ -233,6 +234,7 @@ def get_completion(conversation, model="gpt-4-1106-preview"):
|
|
233 |
'Obscene': -3
|
234 |
}
|
235 |
|
|
|
236 |
def sentiment_flow_plot(conv):
|
237 |
conv_with_labels = extract_conv_with_labels(analysis)
|
238 |
num_utterances = len(conv_with_labels)
|
@@ -266,23 +268,28 @@ def get_completion(conversation, model="gpt-4-1106-preview"):
|
|
266 |
visitor_Y_converted = [grouped_sentiments[visitor_Y[i]] for i in range(num_utterances)]
|
267 |
agent_Y_converted = [grouped_sentiments[agent_Y[i]] for i in range(num_utterances)]
|
268 |
|
269 |
-
# plt.style.use('seaborn')
|
270 |
|
271 |
fig, ax = plt.subplots()
|
272 |
-
|
273 |
|
274 |
ax.plot(X, visitor_Y_converted, label='Visitor', color='blue', marker='o')
|
275 |
ax.plot(X, agent_Y_converted, label='Agent', color='green', marker='o')
|
276 |
|
277 |
-
plt.
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
for label in
|
282 |
-
|
283 |
|
284 |
-
plt.
|
285 |
-
|
|
|
|
|
286 |
plt.title('Sentiment Flow Plot')
|
287 |
|
288 |
plt.close(fig)
|
@@ -294,28 +301,49 @@ def get_completion(conversation, model="gpt-4-1106-preview"):
|
|
294 |
return response.choices[0].message.content, fig
|
295 |
|
296 |
def set_key(key):
|
297 |
-
|
298 |
os.environ['OPENAI_API_KEY'] = key
|
299 |
load_dotenv()
|
300 |
-
|
301 |
return
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
import gradio as gr
|
304 |
|
305 |
with gr.Blocks() as gpt_analysis:
|
306 |
-
gr.Markdown("## Conversation Analysis")
|
307 |
gr.Markdown(
|
308 |
"This is a custom GPT model designed to provide \
|
309 |
a report on overall sentiment flow of the conversation on the \
|
310 |
-
volunteer's perspective.<br />
|
311 |
api_key = gr.Textbox(label="Key", lines=1)
|
312 |
btn_key = gr.Button(value="Submit Key")
|
313 |
btn_key.click(set_key, inputs=api_key)
|
314 |
-
|
|
|
|
|
|
|
|
|
315 |
btn = gr.Button(value="Submit")
|
316 |
with gr.Row():
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
319 |
|
320 |
btn.click(get_completion, inputs=conversation, outputs=[output_box, plot_box])
|
321 |
|
|
|
1 |
import os
|
2 |
+
import openai
|
3 |
+
import seaborn as sns
|
4 |
from openai import OpenAI
|
5 |
+
from dotenv import load_dotenv
|
6 |
|
7 |
import re
|
8 |
import matplotlib.pyplot as plt
|
|
|
234 |
'Obscene': -3
|
235 |
}
|
236 |
|
237 |
+
|
238 |
def sentiment_flow_plot(conv):
|
239 |
conv_with_labels = extract_conv_with_labels(analysis)
|
240 |
num_utterances = len(conv_with_labels)
|
|
|
268 |
visitor_Y_converted = [grouped_sentiments[visitor_Y[i]] for i in range(num_utterances)]
|
269 |
agent_Y_converted = [grouped_sentiments[agent_Y[i]] for i in range(num_utterances)]
|
270 |
|
|
|
271 |
|
272 |
fig, ax = plt.subplots()
|
273 |
+
sns.set(style="whitegrid")
|
274 |
|
275 |
ax.plot(X, visitor_Y_converted, label='Visitor', color='blue', marker='o')
|
276 |
ax.plot(X, agent_Y_converted, label='Agent', color='green', marker='o')
|
277 |
|
278 |
+
plt.legend(loc='upper left', bbox_to_anchor=(1,1))
|
279 |
+
plt.subplots_adjust(right=0.8)
|
280 |
+
|
281 |
+
plt.yticks(ticks=[-3,-2,-1,0,1,2,3])
|
282 |
+
|
283 |
+
# y_labels = {-3: 'Disapproval/Accusatory/Denial/Obscene', -2: 'Anxious/Confused\nAnnoyed/Remorse', -1: 'Uninterested', 0: 'Greeting/None',
|
284 |
+
# 1: 'Informative', 2: 'Interest/Curiosity', 3: 'Acceptance/Openness'}
|
285 |
|
286 |
+
# cell_text = [[label] for label in y_labels.values()]
|
287 |
+
# plt.table(cellText=cell_text, rowLabels=list(y_labels.keys()), loc='left')
|
288 |
|
289 |
+
# plt.tick_params(axis='y', labelsize=10)
|
290 |
+
|
291 |
+
plt.xlabel('Timestamp')
|
292 |
+
plt.ylabel('Sentiment Score')
|
293 |
plt.title('Sentiment Flow Plot')
|
294 |
|
295 |
plt.close(fig)
|
|
|
301 |
return response.choices[0].message.content, fig
|
302 |
|
303 |
def set_key(key):
|
|
|
304 |
os.environ['OPENAI_API_KEY'] = key
|
305 |
load_dotenv()
|
|
|
306 |
return
|
307 |
|
308 |
+
aligned_markdown_table = """
|
309 |
+
<div style='text-align: right; font-size: small;'>
|
310 |
+
|
311 |
+
| Sentiment Score | Sentiment Label |
|
312 |
+
|:---------------:|:---------------:|
|
313 |
+
| 3 | Acceptance, Openness |
|
314 |
+
| 2 | Interest, Curiosity |
|
315 |
+
| 1 | Informative |
|
316 |
+
| 0 | Greeting |
|
317 |
+
| -1 | Uninterested |
|
318 |
+
| -2 | Anxious, Confused, Annoyed, Remorse |
|
319 |
+
| -3 | Disapproval, Accusatory, Denial, Obscene |
|
320 |
+
|
321 |
+
</div>
|
322 |
+
"""
|
323 |
+
|
324 |
import gradio as gr
|
325 |
|
326 |
with gr.Blocks() as gpt_analysis:
|
327 |
+
gr.Markdown("## Conversation Sentiment Analysis Report")
|
328 |
gr.Markdown(
|
329 |
"This is a custom GPT model designed to provide \
|
330 |
a report on overall sentiment flow of the conversation on the \
|
331 |
+
volunteer's perspective. It also provies a live plot analysis of sentiments throughout the conversation.<br /><br />Click on them and submit them to the model to see how it works.")
|
332 |
api_key = gr.Textbox(label="Key", lines=1)
|
333 |
btn_key = gr.Button(value="Submit Key")
|
334 |
btn_key.click(set_key, inputs=api_key)
|
335 |
+
with gr.Row():
|
336 |
+
with gr.Column():
|
337 |
+
conversation = gr.Textbox(label="Input", lines=4)
|
338 |
+
with gr.Column():
|
339 |
+
output_box = gr.Textbox(value="", label="Output",lines=4)
|
340 |
btn = gr.Button(value="Submit")
|
341 |
with gr.Row():
|
342 |
+
with gr.Column(scale=2):
|
343 |
+
gr.Markdown(aligned_markdown_table)
|
344 |
+
with gr.Column(scale=2):
|
345 |
+
plot_box = gr.Plot(label="Analysis Plot")
|
346 |
+
|
347 |
|
348 |
btn.click(get_completion, inputs=conversation, outputs=[output_box, plot_box])
|
349 |
|