Spaces:
Sleeping
Sleeping
import copy | |
import json | |
import math | |
import re | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.parameter import Parameter | |
''' | |
Much of this code is taken from HuggingFace's OpenAI LM Implementation here: | |
https://github.com/huggingface/pytorch-openai-transformer-lm | |
''' | |
def gelu(x): | |
return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * | |
(x + 0.044715 * torch.pow(x, 3))))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT_FNS = { | |
'relu': nn.ReLU, | |
'swish': swish, | |
'gelu': gelu | |
} | |
class LayerNorm(nn.Module): | |
"Construct a layernorm module in the OpenAI style \ | |
(epsilon inside the square root)." | |
def __init__(self, n_state, e=1e-5): | |
super(LayerNorm, self).__init__() | |
self.g = nn.Parameter(torch.ones(n_state)) | |
self.b = nn.Parameter(torch.zeros(n_state)) | |
self.e = e | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.e) | |
return self.g * x + self.b | |
class Conv1D(nn.Module): | |
def __init__(self, nf, rf, nx): | |
super(Conv1D, self).__init__() | |
self.rf = rf | |
self.nf = nf | |
if rf == 1: # faster 1x1 conv | |
w = torch.empty(nx, nf) | |
nn.init.normal_(w, std=0.02) | |
self.w = Parameter(w) | |
self.b = Parameter(torch.zeros(nf)) | |
else: # was used to train LM | |
raise NotImplementedError | |
def forward(self, x): | |
if self.rf == 1: | |
size_out = x.size()[:-1] + (self.nf,) | |
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w) | |
x = x.view(*size_out) | |
else: | |
raise NotImplementedError | |
return x | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, cfg, scale=False): | |
super(Attention, self).__init__() | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
assert n_state % cfg.nH == 0 | |
self.register_buffer('b', torch.tril(torch.ones( | |
n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = cfg.nH | |
self.split_size = n_state | |
self.scale = scale | |
self.c_attn = Conv1D(n_state * 3, 1, nx) | |
self.c_proj = Conv1D(n_state, 1, nx) | |
self.attn_dropout = nn.Dropout(cfg.adpt) | |
self.resid_dropout = nn.Dropout(cfg.rdpt) | |
# dimensions of w: (batch_size x num_heads x seq_length x seq_length) | |
def _attn(self, q, k, v, sequence_mask): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
b_subset = self.b[:, :, :w.size(-2), :w.size(-1)] | |
if sequence_mask is not None: | |
b_subset = b_subset * sequence_mask.view( | |
sequence_mask.size(0), 1, -1) | |
b_subset = b_subset.permute(1, 0, 2, 3) | |
w = w * b_subset + -1e9 * (1 - b_subset) | |
w = nn.Softmax(dim=-1)(w) | |
w = self.attn_dropout(w) | |
return torch.matmul(w, v) | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) | |
else: | |
return x.permute(0, 2, 1, 3) | |
def forward(self, x, sequence_mask): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
a = self._attn(query, key, value, sequence_mask) | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
a = self.resid_dropout(a) | |
return a | |
class MLP(nn.Module): | |
def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd) | |
super(MLP, self).__init__() | |
nx = cfg.hSize | |
self.c_fc = Conv1D(n_state, 1, nx) | |
self.c_proj = Conv1D(nx, 1, n_state) | |
self.act = ACT_FNS[cfg.afn] | |
self.dropout = nn.Dropout(cfg.rdpt) | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return self.dropout(h2) | |
class Block(nn.Module): | |
def __init__(self, n_ctx, cfg, scale=False): | |
super(Block, self).__init__() | |
nx = cfg.hSize | |
self.attn = Attention(nx, n_ctx, cfg, scale) | |
self.ln_1 = LayerNorm(nx) | |
self.mlp = MLP(4 * nx, cfg) | |
self.ln_2 = LayerNorm(nx) | |
def forward(self, x, sequence_mask): | |
a = self.attn(x, sequence_mask) | |
n = self.ln_1(x + a) | |
m = self.mlp(n) | |
h = self.ln_2(n + m) | |
return h | |
class TransformerModel(nn.Module): | |
""" Transformer model """ | |
def __init__(self, cfg, vocab=40990, n_ctx=512): | |
super(TransformerModel, self).__init__() | |
self.vocab = vocab | |
self.embed = nn.Embedding(vocab, cfg.hSize) | |
self.drop = nn.Dropout(cfg.edpt) | |
block = Block(n_ctx, cfg, scale=True) | |
self.h = nn.ModuleList([copy.deepcopy(block) | |
for _ in range(cfg.nL)]) | |
nn.init.normal_(self.embed.weight, std=0.02) | |
def forward(self, x, sequence_mask): | |
x = x.view(-1, x.size(-2), x.size(-1)) | |
e = self.embed(x) | |
# Add the position information to the input embeddings | |
h = e.sum(dim=2) | |
for block in self.h: | |
h = block(h, sequence_mask) | |
return h | |
class LMModel(nn.Module): | |
""" Transformer with language model head only """ | |
def __init__(self, cfg, vocab=40990, n_ctx=512, | |
return_probs=False, return_acts=False): | |
super(LMModel, self).__init__() | |
self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx) | |
self.lm_head = LMHead(self.transformer, cfg, trunc_and_reshape=False) | |
self.return_probs = return_probs | |
self.return_acts = return_acts | |
if self.return_probs or self.return_acts: | |
pos_emb_mask = torch.zeros(1, 1, vocab) | |
pos_emb_mask[:, :, -n_ctx:] = -1e12 | |
self.register_buffer('pos_emb_mask', pos_emb_mask) | |
def forward(self, x, sequence_mask=None): | |
h = self.transformer(x, sequence_mask) | |
lm_logits = self.lm_head(h) | |
if self.return_probs: | |
lm_logits = F.softmax(lm_logits + self.pos_emb_mask, dim=-1) | |
elif self.return_acts: | |
lm_logits = lm_logits + self.pos_emb_mask | |
return h, lm_logits | |
class LMHead(nn.Module): | |
""" Language Model Head for the transformer """ | |
def __init__(self, model, cfg, trunc_and_reshape=True): | |
super(LMHead, self).__init__() | |
self.n_embd = cfg.hSize | |
embed_shape = model.embed.weight.shape | |
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) | |
self.decoder.weight = model.embed.weight # Tied weights | |
self.trunc_and_reshape = trunc_and_reshape # XD | |
def forward(self, h): | |
# Truncated Language modeling logits (we remove the last token) | |
h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) \ | |
if self.trunc_and_reshape else h # XD | |
lm_logits = self.decoder(h_trunc) | |
return lm_logits | |
def load_openai_pretrained_model(model, n_ctx=-1, n_special=-1, n_transfer=12, | |
n_embd=768, path='./model/', path_names='./'): | |
# Load weights from TF model | |
print("Loading weights...") | |
names = json.load(open(path_names + 'parameters_names.json')) | |
shapes = json.load(open(path + 'params_shapes.json')) | |
offsets = np.cumsum([np.prod(shape) for shape in shapes]) | |
init_params = [np.load(path + 'params_{}.npy'.format(n)) for n in range(10)] | |
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] | |
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] | |
if n_ctx > 0: | |
init_params[0] = init_params[0][:n_ctx] | |
if n_special > 0: | |
init_params[0] = np.concatenate( | |
[init_params[1], | |
(np.random.randn(n_special, n_embd) * 0.02).astype(np.float32), | |
init_params[0] | |
], 0) | |
else: | |
init_params[0] = np.concatenate( | |
[init_params[1], | |
init_params[0] | |
], 0) | |
del init_params[1] | |
if n_transfer == -1: | |
n_transfer = 0 | |
else: | |
n_transfer = 1 + n_transfer * 12 | |
init_params = [arr.squeeze() for arr in init_params] | |
try: | |
assert model.embed.weight.shape == init_params[0].shape | |
except AssertionError as e: | |
e.args += (model.embed.weight.shape, init_params[0].shape) | |
raise | |
model.embed.weight.data = torch.from_numpy(init_params[0]) | |
for name, ip in zip(names[1:n_transfer], init_params[1:n_transfer]): | |
name = name[6:] # skip "model/" | |
assert name[-2:] == ":0" | |
name = name[:-2] | |
name = name.split('/') | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+\d+', m_name): | |
l = re.split(r'(\d+)', m_name) | |
else: | |
l = [m_name] | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
try: | |
assert pointer.shape == ip.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, ip.shape) | |
raise | |
pointer.data = torch.from_numpy(ip) | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
DEFAULT_CONFIG = dotdict({ | |
'n_embd': 768, | |
'n_head': 12, | |
'n_layer': 12, | |
'embd_pdrop': 0.1, | |
'attn_pdrop': 0.1, | |
'resid_pdrop': 0.1, | |
'afn': 'gelu', | |
'clf_pdrop': 0.1}) | |