File size: 4,487 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
'''TAKEN from OpenAI LM Code by HuggingFace'''

import math
import torch
from torch.optim import Optimizer
from torch.nn.utils import clip_grad_norm_


def warmup_cosine(x, warmup=0.002):
    s = 1 if x <= warmup else 0
    return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))


def warmup_constant(x, warmup=0.002):
    s = 1 if x <= warmup else 0
    return s*(x/warmup) + (1-s)*1


def warmup_linear(x, warmup=0.002):
    s = 1 if x <= warmup else 0

    # print(s)

    return (s*(x/warmup) + (1-s))*(1-x)


SCHEDULES = {
    'warmup_cosine': warmup_cosine,
    'warmup_constant': warmup_constant,
    'warmup_linear': warmup_linear,
}


class OpenAIAdam(Optimizer):
    """Implements Open AI version of Adam algorithm with weight decay fix.
    """
    def __init__(self, params, lr, schedule, warmup, t_total,
                 b1=0.9, b2=0.999, e=1e-8, l2=0,
                 vector_l2=False, max_grad_norm=-1, **kwargs):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0 <= warmup:
            raise ValueError("Invalid warmup: {}".format(warmup))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {}".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {}".format(b2))
        if not 0.0 <= e:
            raise ValueError("Invalid epsilon value: {}".format(e))
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
                        b1=b1, b2=b2, e=e, l2=l2, vector_l2=vector_l2,
                        max_grad_norm=max_grad_norm)
        super(OpenAIAdam, self).__init__(params, defaults)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            # print(group['t_total'])
            # print(group['warmup'])
            # if self.state[group['params'][0]]:
            #     print(self.state[group['params'][0]]['step'] / group['t_total'])
            # print()
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(
                        'Adam does not support sparse gradients, \
                        please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['b1'], group['b2']

                state['step'] += 1

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                denom = exp_avg_sq.sqrt().add_(group['e'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

                schedule_fct = SCHEDULES[group['schedule']]
                lr_scheduled = (group['lr'] * schedule_fct(state['step'] /
                                group['t_total'], group['warmup']))
                step_size = (lr_scheduled * math.sqrt(bias_correction2) /
                             bias_correction1)

                p.data.addcdiv_(-step_size, exp_avg, denom)

                # Add weight decay at the end (fixed version)
                if (len(p.size()) > 1 or group['vector_l2']) and group['l2'] > 0:
                    p.data.add_(-lr_scheduled * group['l2'], p.data)

        return loss