import itertools from flight_distance import * def extract_route_factors(raw_weather): route_factors = {} for route, segments in raw_weather.items(): for segment in segments: segment_key = tuple(segment['segment'].split(' -> ')) if segment_key not in route_factors: route_factors[segment_key] = [] route_factors[segment_key].append({ 'weather': segment['weather'], 'temperature': segment['temperature'] }) return route_factors def weather_risk(weather): risk_factors = { "clear sky": 0.1, "few clouds": 0.2, "scattered clouds": 0.3, "broken clouds": 0.4, "overcast clouds": 0.5, "light rain": 0.6, "rain": 0.7, "storm": 0.9 } return risk_factors.get(weather, 0.5) def temperature_impact(temperature): if temperature < 20 or temperature > 25: return abs(temperature - 22.5) / 30 return 0.1 def calculate_adjusted_cost(segment, base_distance, route_factors): if segment in route_factors: factors = route_factors[segment] elif (segment[1], segment[0]) in route_factors: factors = route_factors[(segment[1], segment[0])] else: raise ValueError(f"Segment {segment} not found in route factors.") weather_descriptions = [factor["weather"] for factor in factors] temperatures = [factor["temperature"] for factor in factors] most_common_weather = max(set(weather_descriptions), key=weather_descriptions.count) avg_temperature = sum(temperatures) / len(temperatures) weather_cost = weather_risk(most_common_weather) * 100 temperature_cost = temperature_impact(avg_temperature) * 50 return base_distance + weather_cost + temperature_cost def find_optimal_route(airports, distances, route_factors): best_route, min_distance = None, float('inf') for route in itertools.permutations(airports): total_distance = 0 for i in range(len(route) - 1): segment = (route[i], route[i + 1]) base_distance = distances.get(segment) or distances.get((segment[1], segment[0])) total_distance += calculate_adjusted_cost(segment, base_distance, route_factors) last_segment = (route[-1], route[0]) base_distance = distances.get(last_segment) or distances.get((last_segment[1], last_segment[0])) total_distance += calculate_adjusted_cost(last_segment, base_distance, route_factors) if total_distance < min_distance: min_distance, best_route = round(total_distance, 2), route return best_route, min_distance def check_segment_feasibility(segment, trip_distance, aircraft_specs): segment_distance = trip_distance.get(segment) or trip_distance.get((segment[1], segment[0])) fuel_required, flight_time = calculate_fuel_and_time_for_segment(segment_distance, aircraft_specs) can_fly = fuel_required <= aircraft_specs['Max_Fuel_Capacity_kg'] return can_fly, fuel_required, flight_time def check_route_feasibility(optimal_route, trip_distance, aircraft_specs): total_fuel, total_time = 0, 0 refuel_sectors, sector_details = [], [] can_fly_entire_route = True for i in range(len(optimal_route) - 1): segment = (optimal_route[i], optimal_route[i + 1]) can_fly, fuel, time = check_segment_feasibility(segment, trip_distance, aircraft_specs) sector_info = { "Sector": f"{optimal_route[i]} -> {optimal_route[i+1]}", "Fuel Required (kg)": round(fuel, 2), "Flight Time (hrs)": round(time, 2), "Refuel Required": "Yes" if not can_fly else "No" } sector_details.append(sector_info) if not can_fly: print(f"Cannot fly the sector {optimal_route[i]} -> {optimal_route[i+1]} without refueling.") print(f"Fuel required: {round(fuel, 2)} kg, capacity: {aircraft_specs['Max_Fuel_Capacity_kg']} kg") refuel_sectors.append((optimal_route[i], optimal_route[i+1])) can_fly_entire_route = False else: print(f"Fuel required for {optimal_route[i]} -> {optimal_route[i+1]}: {round(fuel, 2)} kg") print(f"Flight time for this sector: {round(time, 2)} hours") total_fuel += fuel total_time += time last_segment = (optimal_route[-1], optimal_route[0]) can_fly, fuel, time = check_segment_feasibility(last_segment, trip_distance, aircraft_specs) final_leg_info = { "Sector": f"{optimal_route[-1]} -> {optimal_route[0]}", "Fuel Required (kg)": round(fuel, 2), "Flight Time (hrs)": round(time, 2), "Refuel Required": "Yes" if not can_fly else "No" } sector_details.append(final_leg_info) if not can_fly: print(f"Cannot fly the sector {optimal_route[-1]} -> {optimal_route[0]} without refueling.") print(f"Fuel required: {round(fuel, 2)} kg, capacity: {aircraft_specs['Max_Fuel_Capacity_kg']} kg") refuel_sectors.append((optimal_route[-1], optimal_route[0])) can_fly_entire_route = False else: print(f"Fuel required for {optimal_route[-1]} -> {optimal_route[0]}: {round(fuel, 2)} kg") print(f"Flight time for this sector: {round(time, 2)} hours") total_fuel += fuel total_time += time if can_fly_entire_route: return { "Total Fuel Required (kg)": round(total_fuel, 2), "Total Flight Time (hrs)": round(total_time, 2), "Can Fly Entire Route": True, "Sector Details": sector_details, "Refuel Sectors": refuel_sectors } else: return { "Can Fly Entire Route": False, "Sector Details": sector_details, "Refuel Sectors": refuel_sectors }