Spaces:
Running
Running
Commit
·
ff5e53a
1
Parent(s):
8ac0324
modular weather script
Browse files- flight_distance.py +3 -2
- main.py +1 -8
- weather.py +50 -32
flight_distance.py
CHANGED
@@ -101,9 +101,10 @@ def calculate_distances(airport_identifiers):
|
|
101 |
# aircraft_specs = get_aircraft_details(aircraft_type)
|
102 |
# print(aircraft_specs)
|
103 |
|
104 |
-
# airport_list = ['SIN','CDG']
|
105 |
# print(get_airport_lat_long(airport_list))
|
106 |
-
#
|
|
|
107 |
|
108 |
# fuel_burn_rate = aircraft_specs['Fuel_Consumption_kg/hr']
|
109 |
# cruising_speed = aircraft_specs['Max_Fuel_Capacity_kg']
|
|
|
101 |
# aircraft_specs = get_aircraft_details(aircraft_type)
|
102 |
# print(aircraft_specs)
|
103 |
|
104 |
+
# airport_list = ['SIN','CDG', 'BOM']
|
105 |
# print(get_airport_lat_long(airport_list))
|
106 |
+
# trip_distance = calculate_distances(airport_list)
|
107 |
+
# print(trip_distance)
|
108 |
|
109 |
# fuel_burn_rate = aircraft_specs['Fuel_Consumption_kg/hr']
|
110 |
# cruising_speed = aircraft_specs['Max_Fuel_Capacity_kg']
|
main.py
CHANGED
@@ -3,7 +3,7 @@ from flight_distance import *
|
|
3 |
from optimizer import *
|
4 |
from weather import *
|
5 |
|
6 |
-
airport_identifiers = ['
|
7 |
|
8 |
#Get Airport Coordinates
|
9 |
lat_long_dict = get_airport_lat_long(airport_identifiers)
|
@@ -19,11 +19,6 @@ route_factors = extract_route_factors(raw_weather)
|
|
19 |
print("On Route weather: \n", raw_weather)
|
20 |
|
21 |
# # Ensure the graph is bidirectional (undirected)
|
22 |
-
# for (a, b), dist in list(trip_distance.items()):
|
23 |
-
# trip_distance[(b, a)] = dist
|
24 |
-
|
25 |
-
# # Find the optimal route with the new cost metric
|
26 |
-
# Ensure the graph is bidirectional (undirected)
|
27 |
for (a, b), dist in list(trip_distance.items()):
|
28 |
trip_distance[(b, a)] = dist
|
29 |
|
@@ -34,5 +29,3 @@ optimal_route, optimal_distance = find_optimal_route(airport_identifiers, trip_d
|
|
34 |
print("Optimal Route:", " -> ".join(optimal_route) + f" -> {optimal_route[0]}")
|
35 |
print("Total Adjusted Distance/Cost:", optimal_distance)
|
36 |
|
37 |
-
# print("Optimal Route:", " -> ".join(optimal_route) + f" -> {optimal_route[0]}")
|
38 |
-
# print("Total Adjusted Distance/Cost:", optimal_distance)
|
|
|
3 |
from optimizer import *
|
4 |
from weather import *
|
5 |
|
6 |
+
airport_identifiers = ['BLR', 'CCU', 'DEL'] # Replace with actual identifiers
|
7 |
|
8 |
#Get Airport Coordinates
|
9 |
lat_long_dict = get_airport_lat_long(airport_identifiers)
|
|
|
19 |
print("On Route weather: \n", raw_weather)
|
20 |
|
21 |
# # Ensure the graph is bidirectional (undirected)
|
|
|
|
|
|
|
|
|
|
|
22 |
for (a, b), dist in list(trip_distance.items()):
|
23 |
trip_distance[(b, a)] = dist
|
24 |
|
|
|
29 |
print("Optimal Route:", " -> ".join(optimal_route) + f" -> {optimal_route[0]}")
|
30 |
print("Total Adjusted Distance/Cost:", optimal_distance)
|
31 |
|
|
|
|
weather.py
CHANGED
@@ -25,51 +25,69 @@ def fetch_weather(lat, lon):
|
|
25 |
response = requests.get(url)
|
26 |
return response.json()
|
27 |
|
28 |
-
# Fetch weather
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def fetch_weather_for_all_routes(airport_identifiers, airports):
|
30 |
route_factors = {}
|
|
|
31 |
|
32 |
-
# Generate all possible routes (permutations)
|
33 |
for route in itertools.permutations(airport_identifiers, len(airport_identifiers)):
|
34 |
-
route_key = " -> ".join(route)
|
35 |
route_factors[route_key] = []
|
36 |
|
37 |
for i in range(len(route) - 1):
|
38 |
start_airport = route[i]
|
39 |
end_airport = route[i + 1]
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Get 4 intermediate points along the route
|
44 |
-
points = get_intermediate_points(start_coords, end_coords)
|
45 |
-
|
46 |
-
# Include start and end airport coordinates
|
47 |
-
points.insert(0, start_coords)
|
48 |
-
points.append(end_coords)
|
49 |
-
|
50 |
-
# Fetch weather for each point
|
51 |
-
weather_descriptions = []
|
52 |
-
temperatures = []
|
53 |
-
|
54 |
-
for point in points:
|
55 |
-
weather = fetch_weather(point[0], point[1])
|
56 |
-
weather_descriptions.append(weather['weather'][0]['description'])
|
57 |
-
temperatures.append(weather['main']['temp'])
|
58 |
-
|
59 |
-
# Aggregate weather for the route segment
|
60 |
-
avg_temperature = sum(temperatures) / len(temperatures)
|
61 |
-
most_common_weather = max(set(weather_descriptions), key=weather_descriptions.count)
|
62 |
-
|
63 |
-
# Store the result in the route_factors dictionary for each route segment
|
64 |
-
segment_key = f"{start_airport} -> {end_airport}"
|
65 |
route_factors[route_key].append({
|
66 |
-
"segment":
|
67 |
-
"weather":
|
68 |
-
"temperature":
|
69 |
})
|
|
|
70 |
return route_factors
|
71 |
|
72 |
-
# # Example
|
73 |
# airports = {
|
74 |
# 'SIN': (1.3644, 103.9915), # Singapore Changi Airport
|
75 |
# 'LAX': (33.9416, -118.4085), # Los Angeles International Airport
|
|
|
25 |
response = requests.get(url)
|
26 |
return response.json()
|
27 |
|
28 |
+
# Fetch weather data for a specific segment (using caching to avoid redundant requests)
|
29 |
+
def get_segment_weather(start_coords, end_coords):
|
30 |
+
points = get_intermediate_points(start_coords, end_coords)
|
31 |
+
points.insert(0, start_coords)
|
32 |
+
points.append(end_coords)
|
33 |
+
|
34 |
+
weather_descriptions = []
|
35 |
+
temperatures = []
|
36 |
+
|
37 |
+
for point in points:
|
38 |
+
weather = fetch_weather(point[0], point[1])
|
39 |
+
weather_descriptions.append(weather['weather'][0]['description'])
|
40 |
+
temperatures.append(weather['main']['temp'])
|
41 |
+
|
42 |
+
avg_temperature = sum(temperatures) / len(temperatures)
|
43 |
+
most_common_weather = max(set(weather_descriptions), key=weather_descriptions.count)
|
44 |
+
|
45 |
+
return {
|
46 |
+
"weather": most_common_weather,
|
47 |
+
"temperature": round(avg_temperature, 2)
|
48 |
+
}
|
49 |
+
|
50 |
+
# Fetch and cache weather data for each segment in the routes
|
51 |
+
def fetch_segment_weather_data(airport_identifiers, airports):
|
52 |
+
segment_weather_cache = {}
|
53 |
+
|
54 |
+
for route in itertools.permutations(airport_identifiers, len(airport_identifiers)):
|
55 |
+
for i in range(len(route) - 1):
|
56 |
+
start_airport = route[i]
|
57 |
+
end_airport = route[i + 1]
|
58 |
+
segment_key = tuple(sorted([start_airport, end_airport]))
|
59 |
+
|
60 |
+
if segment_key not in segment_weather_cache:
|
61 |
+
start_coords = (airports[start_airport][0], airports[start_airport][1])
|
62 |
+
end_coords = (airports[end_airport][0], airports[end_airport][1])
|
63 |
+
segment_weather_cache[segment_key] = get_segment_weather(start_coords, end_coords)
|
64 |
+
|
65 |
+
return segment_weather_cache
|
66 |
+
|
67 |
+
# Aggregate weather data for all routes using the cached segment data
|
68 |
def fetch_weather_for_all_routes(airport_identifiers, airports):
|
69 |
route_factors = {}
|
70 |
+
segment_weather_cache = fetch_segment_weather_data(airport_identifiers, airports)
|
71 |
|
|
|
72 |
for route in itertools.permutations(airport_identifiers, len(airport_identifiers)):
|
73 |
+
route_key = " -> ".join(route)
|
74 |
route_factors[route_key] = []
|
75 |
|
76 |
for i in range(len(route) - 1):
|
77 |
start_airport = route[i]
|
78 |
end_airport = route[i + 1]
|
79 |
+
segment_key = tuple(sorted([start_airport, end_airport]))
|
80 |
+
segment_weather = segment_weather_cache[segment_key]
|
81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
route_factors[route_key].append({
|
83 |
+
"segment": f"{start_airport} -> {end_airport}",
|
84 |
+
"weather": segment_weather["weather"],
|
85 |
+
"temperature": segment_weather["temperature"]
|
86 |
})
|
87 |
+
|
88 |
return route_factors
|
89 |
|
90 |
+
# # Example usage
|
91 |
# airports = {
|
92 |
# 'SIN': (1.3644, 103.9915), # Singapore Changi Airport
|
93 |
# 'LAX': (33.9416, -118.4085), # Los Angeles International Airport
|